El período orbital de un satélite aumenta cuando crece
su distancia media a la Tierra. La lanzadera espacial en una órbita
circular de baja altitud, justo sobre la atmósfera, completa el
círculo en unos 90 minutos. Su órbita está
a unos 6.700 km del centro de la Tierra, mientras que la luna, que está
a 380.000 km, completa una órbita en 27,3 días. A
distancias intermedias hay períodos intermedios y en algún
lugar entre los los dos extremos está la distancia donde el período orbital es de 24 horas. Está a unos 42.000 km o 26.000 millas, unos 6,6 radios terrestres.
|
T = 84 minutos x R x (raíz cuadrada de R) Si tiene a mano una calculadora, puede fácilmente comprobar el valor de T para R=6.6] |
Un satélite que esté en órbita sobre el ecuador a esa distancia mantiene su posición sobre algún punto sobre el suelo; se la conoce como órbita sincrónica, del griego sin--mismo, cronos--tiempo. Una órbita así es útil primero y sobretodo para los satélites de comunicaciones, debido a que una estación en tierra enlazada con el satélite estará siempre en contacto con él, todo el tiempo que su antena apunte hacia un punto fijo en el cielo. Lo mismo ocurre con las antenas parabólicas que reciben las emisiones de TV desde esos satélites y por supuesto, los satélites meteorológicos diseñados para observar (digamos) el tiempo en los EE.UU. siempre tendrá la visión apropiada si está estacionado en una órbita sincrónica y mirando hacia los EE.UU. La agencia NOAA del gobierno de los EE.UU. ("National Oceanic and Atmospheric Administration") mantiene un conjunto de satélites sincrónicos GOES para la observación del tiempo y vigilar el ambiente espacial. Las imágenes obtenidas por esos satélites están disponibles en la web y son actualizadas cada 15 o 30 minutos. La red de seguimiento de la NASA, también usa satélites TDRSS (Tracking, Data and Relay Satellite System) en órbitas sincrónicas para recopilar datos de los vehículos espaciales cercanos a la Tierra. Actualmente más de 200 vehículos espaciales comparten esa órbita, la mayoría satélites de comunicaciones comerciales. La órbita sincrónica también es la frontera
aproximada entre la protegida magnetosfera terrestre y las partes exteriores
donde suceden las subtormentas y otros cambios activos. Por esta razón
muchos satélites sincrónicos transportan detectores de campos
magnéticos y para la detección de iones y electrones atrapados
o inyectados. El interés en esa región está motivada
en parte para la comprensión de que la llegada repentina de una
gran cantidad de partículas energéticas, como ocurre de vez
en cuando, pueden cargar los satélites con varios cientos de voltios,
pueden crear señales falsas en sus circuitos y pueden incluso, en
casos extremos, causar serios daños.
|
|
(Arriba) Registro de los electrones interceptados por el satélite sincrónico ATS 6 el 20 de julio de 1974. Los picos dentados marcan la llegada de electrones en subtormentas y desaparecen gradualmente de nuevo. Las menores energías que persisten pertenecen a la lámina de plasma de la cola magnética (descrita en una sección posterior) en la que el satélite está inmerso durante casi la mitad de su órbita. |
Próxima Etapa: #15. Energía Author and Curator: Dr. David P. Stern Ultima actualización 12 de Noviembre de 2004, traducir 21 December 2000
|