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Abstract

We discuss the possibility of emerging

conscious behaviour in open quantum

systems based on the de�nition of

consciousness as the capability of a

system to model the behaviour of

its environment and act accordingly

to the model. According to the laws

of thermodynamics the entropy of the

learning system and its environment

cannot decrease, unless a quantum

measurement is performed on it by

external consciousness. This prohibits the

emergence of conscious behaviour in

arti�cial systems. The consideration is

illustrated by numerical examples.
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Subjects

Strong AI - 'èíòåëëåêò ÷åëîâå÷åñêîãî óðîâíÿ'

Intelligent agents (IA) - àâòîíîìíûå àãåíòû

Thermodynamics of classical stochastic learning

Quantum machine learning

Thermodynamics of quantum machine learning

Thermodynamic restrictions on quantum AI
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Energy budget of AI systems

Turing test

AI is strong if it cannot be distinguished from a human by means of

interrogation using a computer keyboard.

... no system has passed the Turing test as yet.

Energy budget of civilizations

Kardashev scale:

1 Planetary civilzation

2 Stellar civilization

3 Galactic civilization

[Picture from Wikipedia]
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Intelligent agents (IA) functionality

Recording facility � input devices enabling the perception of

information from the environment.

Discriminating facility � a neural network or an algorithmic

system, which classi�es the data perceived, builds a model of

environment, and controls the actuators.

Control facility � it stores the perceptions into the memory as

individual knowledge, and directs the learning of discriminating

facility by rewards or by other means.

Actuators � devices, acting upon environment according to

signals from discriminating facility.

Stimulus

?

Receptors -�Neural network-
�

E�ectors

6

Reaction
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Classical stochastic learning
S.Goldt and U.Seifert, Phys. Rev. Lett. 118(2017)010601

Let {w} be set of weights of a neural network. The weight-update

rule for supervised learning can be written in di�erential form:

ẇ(t) = −w(t) + f (w(t), ξ, σT , t) + ζ(t),

where f (·) represents a learning algorithm, ξ are vectors from the

training set, and σT are the true labels for these vectors, ζ(t)
is Gaussian noise. Considering a single neuron ought to classify

N-dimensional vectors into two classes, labelled by σT = ±1, as a
linear adder, the recognition of any new vector ~ξ is performed by a

stochastic process

σ = F (A[w , ξ], ·) = ±1, A[w , ξ] =
1√
N

N∑
k=1

ξkwk ,

The algorithm f (·) ought to be chosen to maximize the probability

of F (A[w , ξ(µ)], ·) = σ
(µ)
T , where µ labels the data in the training

set.
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Thermodynamics of classical stochastic learning

Having the learning completed, we need to know how much the

generated label σ reduces our uncertainty about the true label σT
for the shown vector ξ:

I (σ : σT ) ≡ S(σT )−S(σT |σ), S(X |Y ) := −
∑

p(x , y) log
p(x , y)

p(y)

The e�ciency of learning is given by the ratio of the mutual

information I (σ : σT ) to the total entropy production S. Goldt è

U. Seifert. �Stochastic Thermodynamics of Learning�. â: Phys. Rev.
Lett. 118 (2017), ñ. 010601:

η =
I (σ : σT )

∆S(w) + ∆Q
, ∆S(w) = S(w(0), 0)− S(w(t), t),

where ∆Q is the heat dissipated by the weight tuning process, and

S(w , t) is the Shannon entropy of the marginalized distribution

p(w , t) =
∑

σT ,σ
p(σT ,w , σ, t).
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Open quantum systems

Closed quantum system obeys the

Schr�odinger equation

ı~
∂

∂t
|x〉 = Ĥ|x〉

For an open system

|ψ〉 =
∑
x ,y

cxy |x〉|y〉

For an observable A measured on

a system X :

〈ψ|Â|ψ〉 =
∑

c∗x ′y ′cxy 〈x ′|Â|x〉〈y ′|y〉

= Axx ′ρxx ′ = TrÂρ̂, ρ̂ = cc†

in view of orthogonality 〈y |y ′〉 = δyy ′

of states in the unobserved space Y

Density matrix ρ obeys the von

Neumann equation:

ı~∂ρ̂∂t = [Ĥ, ρ̂].
X Y

Thermodynamically our approach is similar to

I. A. Luchnikov è äð. �Machine Learning

Non-Markovian Quantum Dynamics�. â: Phys. Rev.

Lett. 124 (14 2020), ñ. 140502

Teacher

Environment
System

Bath
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Quantum machine learning

Neural networks (eN)

Nonlinear activation function

Massive parallelism of

synaptic connections

Open dissipative system

working at room

temperature

Quantum computers (NP)

Linear operators acting on

quantum states

Quantum parallel processing

of superposed states

Unitary evolution in a closed

system preserves coherence

Data:

Classical

or

Quantum Picture from S. Ghosh è a.o. �Quantum

reservoir processing�. â: npj Quantum Inf.

5 (2019), ñ. 35

Output:

Classical

or

Quantum
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Quantum spin (S) learns the direction of 'classical' spin (T)

Classical spin ρT =

(
p↑ 0
0 p↓

)
is equivalent to a constant magnetic

�eld. Its interaction with a spin qubit (S) is given by the Hamiltonian

HST = −w

2
σ̂z , where w = W 〈σT 〉.

The dynamic of a single Ising spin can be then described by a

Lindblad- Gorini-Kossakowski-Sudarshan- type master equation see e.g.,

H. Breuer è F. Petruccione. The theory of open quantum systems. Oxford University Press, 2002:

dρ

dt
=
ıΩ

2
[σx , ρ(t)] +

ıw

2
[σz , ρ(t)] + γ0(n + 1)

(
σ−ρσ+−

− 1

2
{σ+σ−, ρ(t)}

)
+ γ0n

(
σ+ρσ− −

1

2
{σ−σ+, ρ(t)}

)
,

where n is the number of quanta in the reservoir B , and γ0 is the

reservoir coupling constant.
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Entropy dynamics of a single qubit

Substituting

ρ(t) =

(
a(t) ξ(t) + ıη(t)

ξ(t)− ıη(t) 1− a(t)

)
into the master equation we get

dξ

dτ
= −ξ − w ′η,

dη

dτ
= −η + w ′ξ − Ω′a +

Ω′

2
,

da

dτ
= −2a + Ω′η + r

The entropy S = −Trρ log2 ρ

S = −x+ log2 x+ − x− log2 x−

x± = 1
2
±
√

1
4

+ a2 − a + ξ2 + η2

 0.7
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S
(τ

)

τ

Entropy S = S(τ), calculated for arbitrary values of

parameters Ω′ = 1/3, r = 2/3,w′ = 1/5, and initial

conditions ξ(0) = η(0) = 0, a(0) = 0.8

where τ = tγ0

(
n + 1

2

)
is dimensionless time, w′ = w

γ0

(
n+ 1

2

) is renormalised 'magnetic �eld', Ω′ =

Ω

γ0

(
n+ 1

2

) is renormalized Rabi frequency, r = n

n+ 1
2
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Learning on general classical data (ξ
(µ)
i =±1, σ(µ)

T =±1)
Let the training set consist of P classical data vectors

ξ(µ) = (ξ
(µ)
1 , . . . , ξ

(µ)
N ;σ

(µ)
T ), not a�ected by any interaction.

Its density matrix is diagonal ρ̂T =
∑2N+1−1

ξ=0 P(ξ)|ξ〉〈ξ|. The

initial density matrix of the whole system is the direct product

ρ̂(0) = ρ̂S ⊗ ρ̂T ⊗ ρ̂B . The evolution of the learning system is given

by the von Neumann equation traced over T and B :

ı~ρ̇S(t) = TrT ,B [H, ρ̂(t)].

The trace over bath degrees of freedom is reduced to the weighted

sum with the probabilities Pµ of each vector from the training set:

ı~ρ̇S(t) =
P∑
µ=1

PµTrB [Hµ, ρSB(t)],

Hµ = −λσµT σ̂0
z −

N∑
i=1

ξµi σ̂
i
z +

∑
k

N∑
i=0

λik(b†k + bk)σ̂iz

− 1

2

N∑
i=0

εi σ̂
i
z −

1

2

∑
i 6=j

Jij σ̂
i
z σ̂

j
z −

1

2

N∑
i=0

Ωi σ̂
i
x +

∑
k

ωkb
†
kbk
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Quantum system learns on quantum data?

The notion of �learning on quantum data�

is not well de�ned. An attempt to learn

the quantum state of the teacher results

in quantum evolution of both S and T .

The information S gains from T is given

by the mutual information

I [ρS : ρT ] := S [ρS(t)]+S [ρT (t)]−S [ρ(t)],

ρS(t) = TrTρ(t), ρT (t) = TrSρ(t)
are the partial density matrices,

S [ρ] = −Trρ log2 ρ.
S [ρS ] is entanglement entropy

At the absence of the heat bath the entropy of the combined

system is conserved, but S becomes entangled with T :

ρ(t) = e−ıĤtρ(0)eıĤt .

S T

Ĥ = −
Ω

2
σ̂
S
x −

w

2
σ̂
S
z −

J

2
σ̂
S
z σ̂

T
z −

∆

2
σ
T
z .
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The entropy oscillates synchronously with

the mutual information between S and T .

The system S starts from the state

|0〉+|1〉√
2

, the teacher T starts from the

state
|0〉−|1〉√

2
. The parameters of the

Hamiltonian are
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Quantum learning at the presence of heat bath

At the presence of external environment,

the heat bath B , connected to the learning

system, the entropy of the total system

(S+T) grows faster than the entropy of S .
The evolution of entropies, entanglement

and mutual information were calculated

according to the master equation:

dρ

dt
= ı[

Ω

2
σ̂Sx +

w

2
σ̂Sz +

J

2
σ̂Sz σ̂

T
z +

∆

2
σTz , ρ(t)]

+ γ0(n + 1)

(
σS−ρσ

S
+ −

1

2
{σS+σS−, ρ(t)}

)
+ γ0n

(
σS+ρσ

S
− −

1

2
{σS−σS+, ρ(t)}

)
,

E [ρST ] C.H.Bennet et al. PRA 54(1996)3824
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Evolution of the entropy

S[ρST ], mutual information,

and entanglement of formation

E [ρST ], calculated for the density

matrix ρST (t). Initially the system

is in the state
|0〉+|1〉√

2
state,

the teacher starts its evolution

from the state
|0〉−|1〉√

2
. The

parameters of the Hamiltonian are:

Ω = 1.0,w = 0.2, J = 1.0,∆ = 0.
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Thermodynamic restrictions on learning

At the assumption of an in�nite heat bath B at equilibrium at a

temperature T , the entropy production by the combined system S +
T is non-negative:

σ =
dSST
dt

+ J ≥ 0, J = − 1

T

d

dt
Tr(HρST ),

where J is the entropy �ux from the system S + T to the heat bath

B .
The non-negativity of the total entropy production in the system ST

takes the form

ṠS + ṠT −
1

T

dEST

dt
≥ İ (σ : σT ), EST ≡ Tr(HρST ),

Integrating the latter equation we get

Inequality

∆SS + ∆ST + ∆Q/T ≥ ∆I (σ : σT )
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Impossibility of perpetual learning

1 ∆Q > 0 � The system S + T is heating the environment. The

excess of energy of S + T system is dissipated to the bath B in
the form of heat ∆Q:

∆EST = ∆Q, ∆SS + ∆ST + ∆Q/T ≥ ∆I (σ : σT ).

We can't extract more information ∆I than the energy ∆E
spent.

2 ∆Q < 0 � The system S + T is embedded in a hot

environment. The heat �ux goes from B to S + T :

−∆Q/T = ∆SS + ∆ST −∆I (σ : σT ) ≥ 0.

Since the l.h.s. is positive, the gained ∆I is less than the sum

of entropy increase in S and T . If the system ST relaxes to

equilibrium with B , the heat �ux should vanish, and so will do

the mutual information I (σ : σT ).
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Thank You for your attention!

Future space mission: Drawing by K.Zabusik
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