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The paper discusses the problem of maintenance of the tetrahedral configuration of four satellites. They are

assumed tomove passively along near-circular orbits and, in linear approximation, their relativemotion is finite. The

main goal is to define such initial conditions of satellite motion that allow the tetrahedron to preserve its volume and

shape. The classification of the obtained solution is presented. General expressions for the initial parameters

determination, as well as solution families for some special cases, are obtained. A numerical study that includes

J2 perturbation is conducted for different types of orbits.

I. Introduction

U TILIZATION of several spacecraft in a single mission has a
number of benefits in comparison with a single spacecraft

mission. Such missions are more redundant because the equipment is

divided into several spacecraft, which allows the avoidance of a total
loss in case of one of the spacecraft experiences failure. But the most
important advantage is the new possibilities that they provide. First
of all, it is the coverage:whena bunchof satellites canprovide imageof

thewhole Earth surface every day (Planet Labs constellation) or allow
us to determine our position at every place on Earth (Galileo, GLObal
NAvigation Satellite System, or the Global Positioning System).
However, not only highly distributed formations are used in

applications; close ones, when the distance between satellites is about

several kilometers, can provide useful scientific data. There are
successful missions when satellites have to fly following a given
geometry in an orbital reference system, for example, Hyperspectral
PRecursor of the Application Mission, gravity recovery and climate

experiment, etc. [1–4]. The present paper is focused on tetrahedral
satellite formation; more accurately, the main goal is to obtain a set of
initial conditions for a group of four satellites so that they form a

tetrahedronmeeting certain criteria. This concept is especially suitable
to the scientific missions with the goal of geomagnetic field
exploration. Because single spacecraft missions are incapable of
distinguishing temporal and spatial variations of the geomagnetic

field, the only continuous source of multipoint measurements is the
three-dimensional cell of satellites, i.e., the group of four [5,6]. In
recent years, significant effort has been devoted to this problem;

several missions were proposed, investigated thoroughly, and
successfully launched: the examples include theAuroral Litesmission
[7], Cluster II [8], and the Magnetospheric Multiscale mission.
The Magnetospheric Multiscale (MMS) mission should be

described here more thoroughly because the success of the mission
was one of the motivators for the authors to develop research. The

MMS mission is an example of the most deeply developed satellite
formation mission: both from engineering and scientific points of
view. The goal ofMMS is to study small-scale processes that occur in

the magnetosphere, as well as the structure of its different regions. To

acquire the necessary data, measurements must be taken by a three-
dimensional nondegenerate formation of satellites. To achieve, it the
particular criteria were developed for a mission construction: the
tetrahedron formed by the formation should be as regular as possible
while orbiting throughout the region of interest near the apogee of the
orbit [9].
The definition of “being as regular as possible” was defined in a

strict mathematical way: the scalar quality factor was defined for a
generic tetrahedron [10,11]. This factor could be defined several
possible ways [12]: the MMS mission uses the ratio of volume of a
given tetrahedron and the volume of a regular tetrahedron with the
same average side length as the given one [13–18]. The proposed
method produces a quality factor that lies between zero and unity and
is equal to zero (one) only for a degenerate (respectively, regular)
tetrahedron.
Moreover, to maintain a tetrahedron with a side length laying in a

given interval, the quality factor is multiplied by a spline function,
which nullifies the quality factor for a tetrahedronwith an undesirable
size. To maintain a regular tetrahedron throughout the whole
region of interest, the integral of the quality factor was numerically
approximated and then maximized [19,20].
A quite challenging task for this mission design was to

appropriately choose initial orbit parameters for each satellite.
Because the satellite is subject to different external disturbances, such
as the J2 perturbation and solar radiation pressure, inappropriate
initial conditions might lead to a fast degradation of the tetrahedron.
There are several papers that investigated the problem of the design
and control of formation using a solar sail. A paper [21] proposed
solar sail formation flying for exploring the geomagnetic tail. This
possibility and the problem of solar sail formation design were
explored in detail using analytical and numerical optimizations for
two-, three-, and four-craft formations [22,23]. The GeoSail mission
concept has been designed to achieve solar sail propulsion control
while providing scientific data along the Earth’s geomagnetic tail
[24]. For close formation flying, so-called J2-invariant orbits [25,26]
might be used, when the distance between two satellites remains the
same even under the influence of the J2 perturbation. However, their
utilization imposes strict restrictions on orbit parameters; therefore, it
might be impossible to construct the tetrahedron.
This paper complements the existing body of work in the following

way: we want to find solutions for a problem similar to the one of the
MMS mission but on the near-circular orbits. It might be necessary if
we want to study the geomagnetic field (or for any other scientific
application that requires simultaneous and distributed measurements)
[27] at low Earth orbit. In addition, we suppose that measurements
should be provided for the whole duration of the mission; thus, the
tetrahedron must always “be as good as possible.” We propose an
index describing the distortion of the tetrahedron that is similar but not
quite equal to the one used in the MMS mission; we also provide a
solution to the initial value problem that keeps the geometry of the
formation approximately fixed. It should be mentioned that, for
analytical investigation,wewill use a simpleHill–Clohessy–Wiltshire
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model. Although the obtained results could not be implemented
directly for the full model of motion, they might be used as a starting
point for the numerical optimization problem.

II. Problem Statement and Motion Model

We state the problem as follows:
1) Four satellites orbit passively on near-circular orbits, forming a

tetrahedron.
2) The main goal is to find the initial parameters for the satellite

motion so that the tetrahedron does not change its size and shape over
time (the mathematical equivalent of size and shape preservation will
be introduced later).
3) Additionally, we will suppose that measurements must be

provided for thewhole duration of themission, and so the tetrahedron
should never reach zero volume.
We use the following right-handed Cartesian reference frames:
1) The first reference frame is the inertial reference frame (IRF). Its

center O� is at the Earth center of mass, the axis O�Z is directed
along the Earth axis of rotation, and the axis O�X is directed to the
vernal equinox corresponding to the epoch J2000.
2) The second reference frame is the orbital reference frame (ORF).

Its centerO is at the one of satellites, the axisOx is directed along the
radius vector of the point O away from the Earth, and the axis Oz is
normal to the orbital plane and is directed along theorbitalmomentum.

A. Motion Model

We use the following assumptions:
1) One of the satellites moves along a circular orbit.
2) The other three move along near-circular orbits.
3) There is no first-order relative drift between the satellites, and so

they never fly away from each other in linear model of motion.
The center of ORF is located in the satellite moving along the

circular orbit. Without loss of generality, we refer to this satellite as
“the fourth.” Its motion in the ORF is described by

r4�t� � hx4�t�; y4�t�; z4�t�i � h0; 0; 0i
The first and the second assumptions allow us to describe

the relative motion of other satellites using the linearized
Clohessy–Wiltshire equations:

�x − 2n _y − 3n2x � 0;

�y� 2n _x � 0;

�z� n2z � 0;

where n �
����������
μ∕ρ3

p
is the mean motion, μ is the Earth gravitational

parameter, and ρ is the radius of circular orbit. The third assumption
guarantees periodic motion of each satellite in the ORF, and so the
tetrahedron size is bounded over time. This motion (in the linear
model) is then described by the following equations:

xi�t� � Ai sin ν� Bi cos ν;

yi�t� � 2Ai cos ν − 2Bi sin ν� Ci;

zi�t� � Di sin ν� Ei cos ν (1)

where ν � nt. Here,Ai,Bi,Ci,Di, andEi are constants depending on
the initial values ofmotion; and index i attains values of one, two, and
three. Themotion of the fourth satellite is described by the same set of
equations with all the constants being equal to zero.

B. Volume Conservation

We now derive the conditions for the tetrahedron to preserve size
and shape. The natural measure for the size of the tetrahedron is
volume V. In the ORF, the volume has the form

V � 1

6
det kr1 − r4; r2 − r4; r3 − r4k � 1

6
det kr1; r2; r3k (2)

Substituting ri with values from Eq. (1), we obtain the volume as a

trigonometric polynomial of ν:

6V � P sin3ν�Q cos3ν� R sin2ν cos ν� T sin ν cos2ν

�U sin2ν� V cos2ν�W sin ν cos ν (3)

The coefficients in the polynomial depend on initial conditions,

i.e., on Ai, Bi, Ci, Di, and Ei. The exact expressions for the

coefficients will be derived later. For every possible value of ν,
the volume [Eq. (3)] must remain the same. In addition, it should not

be equal to zero.
Now, we obtain the conditions when the trigonometric polynomial

is identically constant with respect to time; i.e., the tetrahedron

volume does not change. To acquire the necessary conditions for

volume preservation, we will substitute different values of ν in this

polynomial. Substituting ν � 0, ν � �π∕2�, ν � π, and ν � �3π∕2�
in Eq. (3) and equating all the results, we acquire the following

necessary conditions on the coefficients:

Q� V � P�U � −Q� V � −P�U

so that Q � P � 0 and U � V. This leads to the simplified

expression for volume:

6V � sin ν cos ν�R sin ν� T cos ν�W� �U

Now, substitute ν � �π∕4�, ν � �3π∕4�, ν � �5π∕4�, and ν �
�7π∕4� to obtain

R� T �
���
2

p
W � −�R − T �

���
2

p
W� � −R − T �

���
2

p
W

� −�−R� T �
���
2

p
W�

so R� T � 0, R � T or simply R � T � 0,W � 0.
Hence, for the volumeV of the tetrahedron to remain constant, it is

necessary that

P � Q � T � W � R � 0;

U � V (4)

Under these conditions, the volume is equal toV � �U∕6�; hence,
they are also sufficient.
Second, wewant the tetrahedron to be nondegenerate. To simplify

notation, we combine constants Ai, Bi, Ci, Di, and Ei in Eq. (1) in

vectors. LetA � hA1; A2; A3i,B � hB1; B2; B3i,C � hC1; C2; C3i,
D � hD1; D2; D3i, and E � hE1; E2; E3i. With this notation, and

after appropriate simplifications, the conditions [Eq. (4)] have the

form

U � V → C ⋅ �D ×A� � C ⋅ �E × B�;
P � 0 → B ⋅ �A ×D� � 0;

Q � 0 → A ⋅ �E ×B� � 0;

W � 0 → C ⋅ �D × B� � C ⋅ �A ×E�;
R � 0 → B ⋅ �A ×E� � 0;

T � 0 → A ⋅ �D ×B� � 0 (5)

whereX ⋅ �Y × Z� is the mixed product of three vectorsX, Y, and Z.
If A, B, D, or E is equal to zero, then U � 0 or V � 0 so that

V � �U∕6� � 0, which should be avoided. If none of these vectors

are equal to zero, then fromEq. (5), we can derive that all four of them

should be coplanar.
If A and B are collinear, A � kB, k ≠ 0, and

U � V → k C ⋅ �D × B� � C ⋅ �E ×B�;
W � 0 → C ⋅ �D ×B� � k C ⋅ �B ×E� (6)
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That implies

C ⋅ �D×B� � k C ⋅ �B×E� � −k C ⋅ �E×B� � −k2C ⋅ �D×B�

so that C ⋅ �D ×B� � 0 and, again, U � 0 and V � 0, which is
inadmissible.
IfA andB are not collinear, then they form a basis in a plane; and

coplanar D and E are expressed as linear combinations:

D � aA� bB;

E � cA� dB

so that

U � V → C ⋅ ��aA� bB� ×A� � C ⋅ ��cA� dB� ×B�;
W � 0 → C ⋅ ��aA� bB� ×B� � C ⋅ �A × �cA� dB��

and

bC ⋅ �B ×A� � cC ⋅ �A ×B�;
aC ⋅ �A × B� � dC ⋅ �A ×B�

which eventually lead to b � −c and a � d.
So, given two noncollinear vectors A and B, vectors D and E

could be found from

D � aA� bB;

E � −bA� aB (7)

With such conditions, the volume V could be calculated from the
formula

V � b

6
A ⋅ �C ×B�

The coefficient b should not be equal to zero in all subsequent

calculations.

C. Shape Conservation

Before we derive conditions that ensure shape preservation,

it is necessary to definewhat the shape is. Unfortunately, the shape of

the tetrahedron does not have simple geometric or algebraic

interpretation, which is partially due to the fact that the tetrahedron

is not fully described by its edge lengths; i.e., the same set of

edge lengths can represent several nonsimilar tetrahedra [28,29]. We

can demand that the tetrahedron remains the same (i.e., it just rotates

over time), but it might be too strict. We will use the following

function:

Q � 12
�3V�2∕3

L

that depicts how close the tetrahedron is to a regular one. Here, V is

the volume, and L is the sum of squares of the tetrahedron edge

lengths. For the regular tetrahedron, Q � 1; and for the degenerate

one (when four satellites lie in the same plane), Q � 0. Figure 1

depicts several possible tetrahedra with corresponding values of Q.

This parameterQ, which we call quality, is similar to the one used in

theMMSmission [16], although it is a little different: it is not integral,

and it does not take into account the size of the tetrahedron. In

addition, the chosen quality is equal to the ratio of the geometric to the

arithmetic means of the eigenvalues of the linear transformation

operator from the regular tetrahedron to the given one [30,31].
Similar to the volume derivation [Eq. (3)] we derive the expression

for L:

L � �r1 − r2�2 � �r1 − r3�2 � �r1 − r4�2 � �r2 − r3�2
� �r2 − r4�2 � �r3 − r4�2 � �r1 − r2�2
� �r1 − r3�2 � �r2 − r3�2 � r21 � r22 � r23 (8)

Fig. 1 Quality of the tetrahedron.
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After substitutions, reductions of terms, and all simplifications, the
derivation for L is a trigonometric polynomial. To examine the
conditions forL to be constant, we again (at first) derive the equations
for coefficients of the polynomial.
In general, the polynomial has the form

L� Pcos2ν�Q cosν sinν�Rsin2ν� T cosν�U sinν�W (9)

Here and after, we use the same letters of P; Q; : : : to denote
arbitrary coefficients not referring to the coefficients in the
polynomial for volume [Eq. (3)].
The condition that Q is constant during the motion together with

the condition of volume conservation leads to conservation of L.
Substituting again ν � 0, ν � �π∕2�, ν � π, and ν � �3π∕2� in

Eq. (9) and equating all the results, we acquire conditions on
coefficients

P� T �W � R�U�W � P − T �W � R −U�W

so that T � U � 0 and P � R. Then,

L � Q cos ν sin ν� P�W

ThatmeansQ � 0, and so the necessary (and obviously sufficient)
conditions for the conservation of L have the form

Q � T � U � 0;

P � R

Thus, L � P�W.
Now, wewrite down these equations in more detail. Using volume

conservation expressions [Eq. (7)], we can simplify the equations:
T � U � 0 is equal to

C1�12A1 − 4A2 − 4A3� � C2�12A2 − 4A1 − 4A3�
� C3�12A3 − 4A1 − 4A2� � 0;

− C1�12B1 − 4B2 − 4B3� − C2�12B2 − 4B1 − 4B3�
− C3�12B3 − 4B1 − 4B2� � 0

Q � 0 is equal to

�2a2 − 2b2 − 6��3A1B1 � 3A2B2 � 3A3B3

− A1B2 − A1B3 − A2B1 − A2B3 − A3B1 − A3B2�
� 2ab�3B2

1 � 3B2
2 � 3B2

3 − 3A2
1 − 3A2

2 − 3A2
3 � 2A1A2

� 2A1A3 � 2A2A3 − 2B1B2 − 2B1B3 − 2B2B3� � 0

P � R is equal to

a2�3B2
1 � 3B2

2 � 3B2
3 − 2B1B2 − 2B1B3 − 2B2B3�

� 2ab�−3A1B1 − 3A2B2 − 3A3B3 � A1B2 � A1B3

� A2B1 � A2B3 � A3B1 � A3B2�
� b2�3A2

1 � 3A2
2 � 3A2

3 − 2A1A2 − 2A1A3 − 2A2A3�
� �12A2

1 � 12A2
2 � 12A2

3 − 8A1A2 − 8A1A3 − 8A2A3

� 3B2
1 � 3B2

2 � 3B2
3 − 2B1B2 − 2B1B3 − 2B2B3�

� a2�3A2
1 � 3A2

2 � 3A2
3 − 2A1A2 − 2A1A3 − 2A2A3�

� 2ab�3A1B1 � 3A2B2 � 3A3B3 − A1B2 − A1B3

− A2B1 − A2B3 − A3B1 − A3B2�
� b2�3B2

1 � 3B2
2 � 3B2

3 − 2B1B2 − 2B1B3 − 2B2B3�
� �3A2

1 � 3A2
2 � 3A2

3 − 2A1A2 − 2A1A3 − 2A2A3

� 12B2
1 � 12B2

2 � 12B2
3 − 8B1B2 − 8B1B3 − 8B2B3�

All the coefficients of Ai, Bi, and Ci are from Eq. (1), and so they
depend on initial values of the satellite motion.
Let us denote

η � 3A1B1 � 3A2B2 � 3A3B3 − A1B2 − A1B3 − A2B1

− A2B3 − A3B1 − A3B2;

ζ � 3B2
1 � 3B2

2 � 3B2
3 − 3A2

1 − 3A2
2 − 3A2

3 � 2A1A2

� 2A1A3 � 2A2A3 − 2B1B2 − 2B1B3 − 2B2B3

so that

Q � 0;

P � R

becomes

�a2 − b2 − 3�η� abζ � 0;

�a2 − b2 − 3�ζ − 4abη � 0

This is a system of linear equations with respect to a2 − b2 − 3 and
ab. It has a trivial solution, but then ab � 0 and either a � 0 or
−b2 − 3 � 0, which is impossible, or b � 0, which makes the
tetrahedron degenerate. So, for the nondegenerate constant shaped
tetrahedron, the systemmust have a nontrivial solution; therefore, the
determinant of the corresponding matrix should be equal to zero:

det

�
η ζ
ζ −4η

�
� −4η2 − ζ2 � 0

That means η � 0 and ζ � 0.
Finally, for the nondegenerate tetrahedron, preserving its volume

and quality (size and shape), vectors A and B must be noncollinear
and the following expressions must be true:

D � aA� bB;

E � −bA� aB;

3A1B1 � 3A2B2 � 3A3B3 − A1B2 − A1B3 − A2B1

− A2B3 − A3B1 − A3B2 � 0;

3�B2
1 � B2

2 � B2
3 − A2

1 − A2
2 − A2

3� � 2�A1A2 � A1A3 � A2A3

− B1B2 − B1B3 − B2B3� � 0;

C1�3A1 − A2 − A3� � C2�3A2 − A1 − A3�
� C3�3A3 − A1 − A2� � 0;

C1�3B1 − B2 − B3� � C2�3B2 − B1 − B3�
� C3�3B3 − B1 − B2� � 0 (10)

The system splits up into three systems:
The one that contains only A and B:

3A1B1 � 3A2B2 � 3A3B3 − A1B2 − A1B3 − A2B1 − A2B3

− A3B1 − A3B2 � 0;

3�B2
1 � B2

2 � B2
3 − A2

1 − A2
2 − A2

3� � 2�A1A2 � A1A3

� A2A3 − B1B2 − B1B3 − B2B3� � 0 (11)

The one that contains C:

C1�3A1 − A2 − A3� � C2�3A2 − A1 − A3�
� C3�3A3 − A1 − A2� � 0;

C1�3B1 − B2 − B3� � C2�3B2 − B1 − B3�
� C3�3B3 − B1 − B2� � 0 (12)
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The one that contains D and E:

D � aA� bB;

E � −bA� aB (13)

To fully describe all possible configurations preserving volume
and quality, one should solve Eq. (10) for unknown vectorsA,B,C,
D, andE. This is the system of 10 equations with 15 variables and 2
parameters of a and b. Given solutionsA andB, and constants a and
b, one can easily calculate D and E. Moreover, vector C has three
components, but only two equations depend on them; so, C could
be found only up to a factor. This arbitrary factor is the parameter
in the general solution. The remaining system [Eq. (11)] contains
six variables and two equations, and so the solutions are four-
parametric families. Together with a, b, and the norm of vector C,
they form seven-parametric families of solutions of general system
(10). Note that the satellite renumbering does not affect the
dynamics, and so we refer to two different solutions obtained from
each other by renumbering the satellites to a single family of
solutions.

III. Particular Solutions and Reference Orbits

In a search for particular solutions, wemake the following variable
changes:

A1 � α cosφ; B1 � α sinφ;

A2 � β cosψ ; B2 � β sinψ ;

A3 � γ cos θ; B3 � γ sin θ

Here,α, β, and γ are amplitudes of oscillations of the first, second, and
third satellites in the ORF, respectively; and φ, ψ , and θ are the initial
phases.
System (11) transforms into

2�αβ cos�φ� ψ� � αγ cos�φ� θ� � βγ cos�ψ � θ��
� 3�α2 cos 2φ� β2 cos 2ψ � γ2 cos 2θ�;

2�αβ sin�φ� ψ� � αγ sin�φ� θ� � βγ sin�ψ � θ��
� 3�α2 sin 2φ� β2 sin 2ψ � γ2 sin 2θ� (14)

As we said, the solutions to Eq. (11) are four-parametric families.
First of all, we note that variable changes of α → N ⋅ α, β → N ⋅ β,
γ → N ⋅ γ, and φ → φ� ξ, θ → θ� ξ, ψ → ψ � ξ do not change
system (11), and so two of the four parameters are arbitrary factors for
the amplitudes and the arbitrary angle, which is the initial phase of the
motion. To simplify the system, we choose an initial moment of time
so that φ → 0, i.e., choose ξ � −φ.
Given values of α∕β, β∕γ, and γ one could solve Eq. (11) at least

numerically. So, three amplitudes of α, β, and γ actually define the
motion. Thus, the solutions of (10) are seven-parametric families,
where parameters are: a, b, the norm of C, the phase ξ and three
independent relations between α, β, γ, for example, the norm of
�α; β; γ�, α∕β and β∕γ.
Unfortunately, wewere not able to obtain a general solution of the

system, and so we consider some important special cases: two of the
three amplitudes are equal. That is,we set β∕γ � 1 so the β � γ � K.
If K � 0, three satellites (the second, the third, and the fourth) are
resting in the ORF (i.e., all of them are located on the y axis), and so
the tetrahedron is degenerate; thus, K ≠ 0. Finally, under all
assumptions and after all substitutions,

β � γ � K ≠ 0;

α � pK;

φ � 0

System (12) transforms into

C1�3p − cosψ − cos θ� � C2�3 cosψ − p − cos θ�
� C3�3 cos θ − p − cosψ� � 0;

C1�− sinψ − sin θ� � C2�3 sinψ − sin θ�
� C3�3 sin θ − sinψ� � 0

and system (11) transforms into

2p�cosψ � cos θ� � 2 cos�ψ � θ� � 3p2 � 3�cos 2ψ � cos 2θ�;
2p�sinψ � sin θ� � 2 sin�ψ � θ� � 3�sin 2ψ � sin 2θ�

After simplifications, we have the following:

4cos
ψ�θ

2

�
pcos

ψ −θ

2
�4cos

ψ�θ

2
−6cos

ψ�θ

2
cos2

ψ −θ

2

�

�12cos2
ψ −θ

2
−8−3p2 � 0;

4sin
ψ�θ

2

�
pcos

ψ −θ

2
�4cos

ψ�θ

2
−6cos

ψ�θ

2
cos2

ψ −θ

2

�
� 0

(15)

The second equation in the system allows us to distinguish the

following two cases:

A. Case 1: sin��ψ � θ�∕2� � 0

In this case, ψ � −θ� 2πk. All angles are modulo 2π, and so

ψ � −θ. System (15) has the form

4p cos θ − 12cos2θ� 8 − 3p2 � 0;

ψ � −θ

Hence,

cos θ � p� 2
����������������
6 − 2p2

p
6

This equation has solutions when p ∈ �− ���
3

p
;
���
3

p 	 but, due to

nonnegativity of p, we have two families of solutions (signs plus and

minus):

ψ � − arccos
p� 2

����������������
6 − 2p2

p
6

;

θ � arccos
p� 2

����������������
6 − 2p2

p
6

(16)

This also means that sinψ � − sin θ and cosψ � cos θ. If

p � ���
3

p
, two families coincide.

Using these results, we could transform system (12) into

p�3C1 − C2 − C3� � �3C2 − C1 − C3� cosψ
� �3C3 − C1 − C2� cos θ � 0;

�3C2 − C1 − C3� sinψ � �3C3 − C1 − C2� sin θ � 0

where sinψ � − sin θ implies C2 � C3, and

C1 � C2

2p − 4 cos θ

3p − 2 cos θ
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Finally, we have the solution

A � K

0
B@ p
cos θ
cos θ

1
CA; B � K

0
B@ 0

− sin θ
sin θ

1
CA; C � c

0
BBB@
2p − 4 cosψ

3p − 2 cosψ
1

1

1
CCCA

where K > 0, and c are arbitrary coefficients.

B. Case 2: sin��ψ � θ�∕2� ≠ 0

In this case, system (15) has the form

cos2
ψ − θ

2
� 8� 3p2

12
;

p cos
ψ − θ

2
� 3p2

2
cos

ψ � θ

2

If p ≠ 0, then this system has solutions when

p ∈
�
1���
3

p ;
2���
3

p
�

They are

ψ � � arccos
�4∕p� � �3p∕2� −

�������������������������������������
6 − 2�2∕p − 3p�2

p
9

;

p ∈
�
1���
3

p ;
2���
3

p
�
;

θ � � arccos
�4∕p� � �3∕2� �

�������������������������������������
6 − 2�2∕p − 3p�2

p
9

;

p ∈
�
2

3
;
2���
3

p
�
;

θ � ∓ arccos
�4∕p� � �3p∕2� �

�������������������������������������
6 − 2�2∕p − 3p�2

p
9

;

p ∈
�
1���
3

p ;
2

3

�

Cases 1 and 2 give different solution families if only

p� 2
����������������
6 − 2p2

p
6

≠
�4∕p� � �3p∕2� �

�������������������������������������
6 − 2�2∕p − 3p�2

p
9

which is equivalent to p ≠ 1 and p � �1∕ ���
3

p �.
Explicit expressions for Ci are quite bulky and not presented. The

case of p � 0 will be considered in the following.

IV. Solutions Analysis

A. One Zero Amplitude

In this subsection, we assume that p � 0 so that
β � γ � K ≠ 0, α � 0. Two satellites have the same amplitude,
and the third one has zero amplitude; i.e., it rests in the ORF. In the
IRF, two satellites of the tetrahedron move along the same orbit with
constant shift.
In case 1, we have

ψ � − arccos
� ���

6
p

3
; θ � arccos

� ���
6

p

3

But, zero amplitude implies that two satellites rest in the ORF, and
so the phase shift between two other satellites depends only on
jθ − ψ j. But,

jθ − ψ j �
������2 arccos

� ���
6

p

3

������ � arccos
1

3

Thus, two solutions coincide. After that, we obtain C2 � C3,
and C1 � 2C2.
We note that phase φ was chosen to be equal to zero just for

simplicity; for a complete description of the solution, we should
return this arbitrary coefficient. The full set of initial values is given
by

A � K

0
BB@

0���
6

p
∕3 cosφ� ���

3
p

∕3 sinφ���
6

p
∕3 cosφ −

���
3

p
∕3 sinφ

1
CCA;

B � K

0
BB@

0

−
���
3

p
∕3 cosφ� ���

6
p

∕3 sinφ���
3

p
∕3 cosφ� ���

6
p

∕3 sinφ

1
CCA;

C � c

0
BB@
2

1

1

1
CCA;

D � aA� bB; E � −bA� aB (17)

where a and φ are arbitrary coefficients; and b, c, andK are arbitrary
nonzero coefficients. In this case,

V� b

6
A ⋅ �C×B� � cK2b

2
���
2

p

9
; L� 8

3
K2�a2�b2 � 5�� 8c2

The maximum of quality is achieved when a � 0, b � � ���
5

p
, and

c � �K
�������������5∕3�p

; and it is equal to Qmax � �1∕ ���
53

p �
Case 2 does not have solutions because

p ∈=
�
1���
3

p ;
2���
3

p
�

but setting p � 0 in the general case implies

cos2
ψ − θ

2
� 2

3
;

sin
ψ � θ

2
≠ 0

This means that cos�ψ − θ� � �1∕3�, and this solution is the same
as in Case 1.
Figure 2 shows the visualization of the resulting tetrahedron: as we

can see, it just rotates around one of its edges.
The next figures show the evolution of the formation quality in the

nonlinear motion model including the J2 geopotential harmonic,
depending on the initial conditions and the size of the satellite relative
orbits. It is necessary tomention that, despite the fact that in the linear
model of motion the quality factor does not depend on φ, in real
motion, the difference in initial conditions yields different relative
drift and a different degrading rate of the tetrahedron.
The different subfigures of Fig. 3 depict different initial values

(different φ parameter with step π∕2) for the formation of the same
size (K � 100 m) in the same orbit. Figure 4 contains the same
information in one combined figure for a more convenient
comparison. The same information for K � 1000 m is presented in
Figs. 5 and 6, respectively.
The different subfigures of Fig. 7 contain the information of the

tetrahedron degrading for different tetrahedron sizes, and the initial
condition φ is chosen so that the degrading rate is minimal; the black
line represents the conserving quality in the linear model. Figure 8
contains the same information combined into one figure. As we can
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Fig. 2 Tetrahedron evolution.
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Fig. 3 Orbit radius of 10,000 km.
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see, the degradation rate increases with formation size, which is
expected due to the increased value of disturbances.
The difference in chief inclination could also greatly affect the

degrading rate of the corresponding tetrahedron. The different
subfigures of Fig. 9 contain the information of the tetrahedron
degrading for different initial inclinations. Figure 10 contains the
same information combined into one figure.
We also note that such a configuration with two satellites moving

on the same orbit (leader–follower formation) is the unique solution
to system (10) without any additional assumptions on the remaining
motion parameters. To show that, we assume that α � 0; using
rotational symmetry, we look for initial conditions when ψ � 0.
Substituting into Eq. (11), we have

3γ2 cos θ sin θ − βγ sin θ � 0;

2βγ cos θ � 3β2 � 3γ2 cos 2θ

The first equation gives either γ � 0, sin θ � 0, or 3γ cos θ � β.
The first option implies that three satellites have zero amplitude (the
one in the origin of the ORF, the assumed one and the one with
amplitude γ � 0) and therefore the tetrahedron is degenerate. The
second option implies that four satellites lie in a plane and tetrahedron
is again degenerate.
For a nondegenerate formation, cos θ � �β∕3γ�; substituting this

into the second equation yields

2βγ
β

3γ
� 3β2 � 3γ2

 
2
β2

9γ2
− 1

!

or simply β � γ. So, the leader–follower formation for two of the four

satellites implies equality of the two amplitudes of the remaining two

satellites.

B. Three Equal Amplitudes

In this subsection, we assume that p � 1 and

α � β � γ � K ≠ 0. Cases 1 and 2 give the same solutions; from

Eq. (16), we obtain

ψ � − arccos
1� 4

6
;

θ � arccos
1� 4

6

Two different families of solutions are generated by

�φ;ψ ; θ� �
�
0;
4π

3
;
2π

3

�
;

�φ;ψ ; θ� �
�
0;− arccos

5

6
; arccos

5

6

�

Every solution family is obtained by rearranging the satellites

among themselves and shifting all the phases by an arbitrary number.

1. �φ;ψ ; θ� � �φ; 4π∕3� φ; 2π∕3� φ�
In this case, the phases are uniformly distributed on the circle; the

full set of initial values is given by
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Fig. 4 Orbit radius of 10,000 km, K � 100, and different values of φ.
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Fig. 5 Orbit radius of 10,000 km.
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Fig. 6 Orbit radius of 10,000 km, K � 1000, and different values of φ.
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A � K

0
BB@

cosφ

−1∕2 cosφ� ���
3

p
∕2 sinφ

−1∕2 cosφ −
���
3

p
∕2 sinφ

1
CCA;

B � K

0
BB@

sinφ

−
���
3

p
∕2 cosφ − 1∕2 sinφ���

3
p

∕2 cosφ − 1∕2 sinφ

1
CCA;

C � c

0
BB@
1

1

1

1
CCA;

D � aA� bB; E � −bA� aB (18)
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Fig. 7 Orbit radius of 10,000 km and different values of K.
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Fig. 8 Orbit radius of 10,000 km and different values of K.
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Fig. 9 Orbit radius of 10,000 km and different inclinations.
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We emphasize again that this is a casewhen parameters p � 1 and
β∕γ � 1, and so the solution is a five-parametric family with φ, a, b,
c, and K as parameters. The family also includes all possible

rearrangements of the satellites.
For this family, the volume and edge lengths are equal to

V � b

6
A ⋅ �C × B� � −cK2b

���
3

p

4
L � 6K2�a2 � b2 � 5� � 3c2

To maximize quality, we set a � 0 so that

Q � 3
���
4

3
p

⋅
�c∕K�2∕3b2∕3

2b2 � 10� �c∕K�2

Maximum quality is obtained when b � � ���
5

p
and c � �K

������
10

p
,

and so Qmax � �1∕ ���
53

p �.
Figure 11 shows the visualization of the resulting tetrahedron; and

Fig. 12 shows the evolution of the formation quality in the nonlinear

motion model, depending on the relative orbits of the satellites.

2. �φ;ψ ; θ� � �φ;− arccos�5∕6� � φ; arccos�5∕6� � φ�
In this case, the phases are shifted on the angle

arccos�5∕6� ≈ 33.56 deg, and the full set of initial values is given by

A � K

0
BB@

cosφ

5∕6 cosφ� ������
11

p
∕6 sinφ

5∕6 cosφ −
������
11

p
∕6 sinφ

1
CCA;

B � K

0
BB@

sinφ

−
������
11

p
∕6 cosφ� 5∕6 sinφ������

11
p

∕6 cosφ� 5∕6 sinφ

1
CCA;

C � c

0
BB@
−1

1

1

1
CCA;

D � aA� bB; E � −bA� aB (19)

where φ, a, b, c, and K are arbitrary coefficients. In this case,

V � b

6
A ⋅ �C ×B� � −cK2b

11
������
11

p

108
;

L � 22

9
K2�a2 � b2 � 5� � 11c2

The set a � 0, b � � ���
5

p
, and c � �K

������
10

p
∕3 maximizes

quality: Qmax � �1∕ ���
53

p �.
Figure 13 shows the visualization of the resulting tetrahedron; and

Fig. 14 shows the evolution of the formation quality in the nonlinear

motion model, depending on the relative orbits of the satellites.
It is easy to see that, as in previous cases, the rate of formation

degeneration increases with relative distances increasing.

V. Nonlinear Error Effects

The Clohessy–Wiltshire equations being used in the previous

sections are obtained through linearization of the Keplerian motion;

thus, there is increasing over time discrepancy between true trajectory

of the satellite and linear approximation. This implies differences

between the ideal linear motion with the constant tetrahedron quality

and the nonlinear motion and evolution of the tetrahedron. Partially,

this fact explains the dependence of quality degradation on the initial

phase of the satellite. In this section, we will explore how nonlinear

terms (but not the eccentricity) affect the tetrahedron.
To do that, we expand the equations of relative motion on a near-

circular orbit up to the second order on the small parameter, which is

the ratio between relative distances and the radius of orbit

�x − 2n _y − n2x � −
μ�ρ� x�

��ρ� x�2 � y2 � z2�3∕2 �
μ

ρ2
;

�y� 2n _x − n2y � −
μy

��ρ� x�2 � y2 � z2�3∕2 ;

�z � −
μz

��ρ� x�2 � y2 � z2�3∕2 ;

Dropping the terms of the third and higher orders on r∕ρ, we obtain
the perturbed Clohessy–Wiltshire equations [32]:

�x − 2n _y − n2x � 2n2x −
3n2

ρ

�
x2 −

y2

2
−
z2

2

�
;

�y� 2n _x − n2y � −n2y� n2

ρ
�3xy�;

�z � −n2z� n2

ρ
�3xz�;

To bring these equations to a suitable form,we first transform them

into dimensionless ones. Let �x � x∕ρ, �y � y∕ρ, �z � z∕ρ, and

ν � nt; and �⋅� 0 is differentiating with respect to ν:

�x 0 0 − 2�y 0 − 3�x � −3 �x2 � 3

2
�y2 � 3

2
�z2;

�y 0 0 � 2 �x 0 � 3�x �y;

�z 0 0 � �z � 3 �x �z

and, finally, we carry out the small parameter ε � K∕ρ in the explicit
form: X � �x∕ε, Y � �y∕ε, and Z � �z∕ε:

X 0 0 − 2Y 0 − 3X � ε

�
−3X2 � 3

2
Y2 � 3

2
Z2

�
;

Y 0 0 � 2X 0 � ε�3XY�;
Z 0 0 � Z � ε�3XZ� (20)

Wesolve these equations only up to the first order on ε; to do so,we
assume that Eq. (20) has the solution in the following form:

R � hX; Y; Zi � R0 � εR1 � : : :

where : : : represents all omitted members of the series. Because

ε ≪ 1, we can use the method of perturbations. If ε � 0, we obtain
the Clohessy–Wiltshire equations; hence, R0 � hX0; Y0; Z0i is just
the solution [Eq. (1)] to these. For R1 � hX1; Y1; Z1i, we have

X 0 0
1 − 2Y 0

1 − 3X1 � ε

�
−3X2

0 �
3

2
Y2
0 �

3

2
Z2
0

�
;

Y 0 0
1 � 2X 0

1 � ε�3X0Y0�;
Z 0 0
1 � Z1 � ε�3X0Z0� (21)

These are nonhomogeneous second-order linear differential

equationswith constant coefficients; hence, they can be easily solved.

The solutionR0 � εR1 is the next order approximation as compared

to the Clohessy–Wiltshire equations.
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Fig. 10 Orbit radius of 10,000 km and different inclinations.
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The solutions in closed form can be found in a paper [33]; here, we

just substitute them into expressions for the volume [Eq. (2)] and sum

of the lengths squared [Eq. (8)]. If ε � 0, these expressions become

constants; for ε ≠ 0, they depend on ε, and this dependence is the

error between true and linear trajectories.

As we are interested only in the first-order approximation with

respect to ε, we omit all members of order ε2 and higher in the series
for V and L.

We apply this technique for two specific families of solutions

separately.

A. Family 1

For the first family of solutions [Eq. (17)]with an optimal choice of

parameters a, b, c and arbitrary K, φ, we obtain the following

equations:

V�ν� � 10
���
6

p

27
K3 � εK3

�
35

24
sin 3φ −

15

8
sinφ

�

− εK3
20

������
10

p

9
ν

� εK3

�
−
25

24
sin�3φ� 2ν� � 5

4
sin�3φ� 3ν�

� 455

108
sin�φ� ν� − 25

9
sin�φ − ν�

� 425

216
sin�φ − 2ν� − 55

36
sin�φ� 2ν� − 5

3
sin�3φ� ν�

� 40
������
10

p

9
sin ν −

10
������
10

p

9
sin 2ν
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Fig. 12 Orbit radius of 10,000 km and different values of K.

Fig. 11 Tetrahedron evolution.
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sinφ

�

− εK2
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������
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3
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�
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������
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3
sin ν� 20

���
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���
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������
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−
���
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���
6

p
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���
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9
sin�φ� ν�
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�
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���
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���
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p

3
cos�φ� ν�
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������
15

p
cos ν − 20

���
6

p
cos�φ − ν�

�

The equations, being the correct approximation to quality

evolution, are still not very convenient and practical. We are

interested now in obtaining linear approximation. Let

�V�ν� � V�0� � νlim sup
ν→�∞

V�ν� − V�0�
ν − 0

V�ν� � V�0� � νlim inf
ν→�∞

V�ν� − V�0�
ν − 0

V̂�ν� � 1

2
� �V�ν� � V�ν��

Fig. 13 Tetrahedron evolution.
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Fig. 14 Orbit radius of 10,000 km.
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The difference between two linear functions depicts the amplitude
of volume oscillations: upper limit approximate maximal, lower

limit/minimal values, and V̂ as the average linear approximation.
Similarly,

�L�ν� � L�0� � νlim sup
ν→�∞

L�ν� − L�0�
ν − 0

L�ν� � L�0� � νlim inf
ν→�∞

L�ν� − L�0�
ν − 0

L̂�ν� � 1

2
� �L�ν� � L�ν��

We have

V̂�ν� � �V�ν� � V�ν� � 10
���
6

p

27
K3 − εK3

20
������
10

p

9
ν

�L�ν� � 40K2 � νK2

�
−ε

160
������
15

p

3
� εMmax

�

L � 40K2 � νK2

�
−ε

160
������
15

p

3
� εMmin

�

whereMmax and Mmin are the maximal and minimal values of�
12

���
6

p
cos�3φ� ν� − 88

���
6

p

3
cos�φ� ν�

− 32
������
15

p
cos ν − 20

���
6

p
cos�φ − ν�

�

This is the expression of the form Aφ cos ν� Bφ sin ν, where Aφ

and Bφ are coefficients depending on φ. Its maximum over ν is equal

to

������������������
A2
φ � B2

φ

q
, and the minimum is equal to −

������������������
A2
φ � B2

φ

q
:

L̂�ν� � 40K2 − K2εν
160

������
15

p

3

So, the average rate of L is constant in the first approximation:

Q̂�ν� � 12
�3V̂��2∕3�

L̂
� 1���

53
p

Figures 15–17 depict differences in the volume, the sum of
lengths squared, and the quality degrading for different values

ofφ:φ � 0,φ � π∕2, andφ � argmin
������������������
A2
φ � B2

φ

q
. The orbit radius

is 10,000 km, K � 1000 m, and i � 60 deg. To make explicit
comparison between different cases possible J2 harmonic is not
included in the simulation here.
The presence of the J2 perturbation also affects the formation

degrading rate, although a careful choice of initial values could
help to maintain the tetrahedron. Figures 18–20 depict the same
values as the previous one, but with the presence of the J2
perturbation force.

B. Family 2

For the second family of solutions [Eq. (18)] using the same

technique, we obtain the following expressions:
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Fig. 15 Volume degrading.
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Fig. 16 Sum of lengths squared degrading.
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Fig. 17 Quality degrading.
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Fig. 18 Volume degrading.
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V̂�ν� � 5
���
6

p

4
K3 − εK3

81
������
15

p

8
ν

L̂�ν� � 90K2 − K2εν243
������
10

p

The minimum oscillation amplitude is achieved when
cos 3φ � −1.

VI. Conclusions

In the paper, reference orbits were constructed for four satellites in
a linear model for the tetrahedron to preserve the volume and quality
according to the introduced criterion. In the case of a circular orbit,
several families of initial conditions that ensured volume and quality
preservation were found.
However, in a more precise motion model due to disturbances

caused by nonlinear terms and J2 perturbations, the tetrahedron
degrades. It is shown that the degradation rate depends on tetrahedron
size (which is expected) and the phase of the satellites, i.e., their initial
placement at the reference orbit.
Taking into account disturbances during reference orbit

construction can greatly reduce the degradation rate of the tetrahedron;
however, it cannot eliminate it completely: after several weeks, the
tetrahedron quality degrades toomuch. To achieve additional accuracy
in a future problem investigation, it is proposed to include additional
perturbations caused by eccentricity of the chief satellite and the J2
harmonic, which can further prolong the mission.
Another possible improvement might be achieved using the

curvilinear relativemotion equations,whichmight better describe the
full dynamics of the formation. In addition, some active control
approaches (e.g., via atmospheric drag) might be investigated.
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