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Предисловие (1) 

В докладе  обсуждаются проблемы выбора высокоапогейных орбит ИСЗ, 

исходя из задач космических экспериментов, нацеленных на изучение 

околоземного космического пространства, и с учѐтом технических 

ограничений.  

 

Участниками процесса выбора и реализации орбит являются 

специалисты различных профессий: от физиков – теоретиков и 

экспериментаторов до специалистов в области небесной механики, 

баллистики и ракетной техники, которым не всегда  удается найти 

общий язык и взаимопонимание. И здесь могут возникать (и порой 

возникают) различные недоразумения.     

 

Автор доклада,  будучи не физиком и не баллистиком, а математиком, 

видит своей задачей минимизацию указанных недоразумений и 

предлагает разделить проблему на две составляющих.   
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Предисловие (2) 
С одной стороны, исходя из задач проектов и с учѐтом различных технических 

ограничений, задачу выбора орбиты можно свести к выбору начальных значений 

пяти независимых орбитальных элементов a, e, ieq, eq, eq (учитывая различные 

ограничения на выбор каждого из этих элементов).  

 

Эта задача решается на основе ситуационного анализа, исходя из 

математических моделей изучаемых областей, качественных методов 

теории возмущений и накопленного опыта выбора орбит для реальных 

космических экспериментов. Настоящий доклад посвящается некоторым 

практическим аспектам решения этой задачи с использованием 

конкретных примеров. При этом ставится задача  выбирать такие 

начальные значения орбитальных элементов, чтобы долговременная 

эволюция орбиты практически не зависела от даты старта. В таком 

случае дату выведения спутника (год, месяц и день) на выбранную орбиту 

практически можно выбирать произвольно.  

 
Вторая составляющая этой проблемы  -  выведение спутника на выбранную 

орбиту является задачей  баллистиков. При этом  перенос даты старта не 

требует  изменения начальных значений орбитальных элементов. А время 

старта при переносе даты старта выбирается с учетом прямого восхождения 

восходящего узла eq, координат точки старта и наклонения орбиты к плоскости 

земного экватора. 
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Формирование начального значения прямого восхождения 

восходящего узла eq0 при запуске спутника на орбиту в 

заданную дату DT и заданное время UTC из заданной точки 

старта с заданным наклонением к плоскости Земного экватора 

0 0( , ) arcsin(tg / tg ),eq lt lt lpeq lpeq eqS DT UTC i    

где Slt = S(DTlt, UTClt) – звѐздное время 

гринвичского меридиана в момент старта, 

измеряемое в градусах относительно точки 

весеннего равноденствия  и определяемое датой 

старта и всемирным временем старта,  

lpeq и lpeq - широта и долгота точки старта в 

геоцентрической гринвичской системе координат,  

ieq0 – начальное значение наклонения орбиты к 

плоскости земного экватора.    

Начальное  значение прямого восхождения 

восходящего узла eq0, измеряемое относительно 

точки весеннего равноденствия текущей эпохи,  
формируется в момент старта и выражается 

соотношением:  
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ИСПОЛЬЗУЕМЫЕ ГЕОЦЕНТРИЧЕСКИЕ 

СИСТЕМЫ КООРДИНАТ 

• Невращающаяся экваториальная система координат Oxyz: плоскость 
Oxy совпадает с плоскостью Земного экватора, ось Ox направлена в 
точку весеннего равноденствия  некоторой фиксированной эпохи, а 
ось Oz направлена по оси вращения Земли.  

• Гринвичская вращающаяся экваториальная система координат: ось 
Ox лежит на пересечении плоскости земного экватора с плоскостью 
Гринвичского меридиана.  

• Невращающаяся эклиптическая система координат OXYZ: плоскость 
OXY совпадает с плоскостью эклиптики, ось OX направлена по линии 
пересечения плоскостей эклиптики и экватора в точку весеннего 
равноденствия , а ось OZ - в полюс мира.  

• Орбитальная система координат O: плоскость O совпадает с 
плоскостью орбиты спутника, ось O направлена в сторону точки 
перигея (вдоль вектора Лапласа), а ось O выбирается так, чтобы 
движение спутника от оси O к оси O происходило против часовой 
стрелки, ось O перпендикулярна к плоскости орбиты спутника. 
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ГЕОЦЕНТРИЧЕСКИЕ  МАГНИТОСФЕРНЫЕ 

СИСТЕМЫ КООРДИНАТ 

• Солнечно-эклиптическая система координат GSE (или SE), основная 
плоскость которой совпадает с плоскостью эклиптики, ось Oz GSE 
направлена в полюс эклиптики,  а ось Ox GSE совпадает c  направлением 
Земля-Солнце.  

• Геомагнитная (дипольная) система координат MAG: Ось Oz MAG 
параллельна оси геодиполя, направленной на геомагнитный полюс D, а 
Ox MAG лежит в плоскости географического меридиана, содержащего 
геомагнитный полюс. Приведѐм некоторые (возможно, устаревшие на 
сегодня) географические координаты геомагнитного полюса: коширота  
(измеряемая относительно оси вращения Земли) составляет ~ 11, 
географическая долгота  ~ -71.  

• Солнечно-магнитная система координат SM: Ось Oz SM параллельна оси 
геомагнитного диполя, а ось Ox SM лежит в плоскости полуденного 
геомагнитного меридиана. 

• Солнечно-магнитосферная система координат GSM: Ось Ox GSM 
направлена на Солнце, а плоскость 0xz GSM содержит ось геомагнитного 
диполя 
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Орбитальные элементы, определяющие форму орбиты: большая 

полуось a и эксцентриситет e, 

 связаны взаимно однозначными соотношениями с выстой  

апогея h и перигея h  

Исходя из экваториального радиуса Земли R, высоты перигея и апогея геоцентрическое 

расстояние перигея и апогея, большая полуось и эксцентриситет и Кеплеров орбитальный 

период P определяются формулами:      

r = h + R,  r = h + R,                                                          

a = (r + r )/2, e = 1 - r /a  = r /a -1.                                    (1) 
 

 

 

Исходя из a и e, геоцентрическое расстояние и высота перигея и апогея 

определяются формулами  

                                         r = a (1 - e),  h = r – R ,                                            (2)                  

r = a (1 + e), h = r – R,  

Наряду с  эксцентриситетом e часто используется безразмерный фокальный параметр  

 = 1 - e2 ,  

который при сохранении большой полуоси a  возрастает и  убывает вместе с высотой перигея (в 

то время, как эксцентриситет ведѐт себя противоположным образом).   
 

Для эллиптических орбит области возможных значений  и e совпадают и принадлежат 

интервалу (0,1). 

3/ 2

2
a

P  

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Исходя из начальных значений высоты апогея и перигея можно 

оценить «запас» высоты перигея с учетом  начального значения 

амплитуды долгопериодической составляющей приращения высоты 

перигея за виток в течение полупериода оборота Луны по еѐ орбите 

Выражение для начального значения амплитуды долгопериодических колебаний 

приращения высоты перигея hm за виток под влиянием возмущений от внешнего 

тела с индексом m получено в книге П.Е Эльясберга [Эльясберг, 1965] 

4 2

0 0 0 0 0 3

15
( , ) 1 , ,

2

m
m m m

m

ampl h a e Q a e e Q
a




    



где  = 398600 км3/с2– гравитационная постоянная, умноженная на массу Земли, 

m = 4902.799 км3/с2– гравитационная постоянная, умноженная на массу Луны, 

am = 384600 км – большая полуось орбиты Луны.  Qm = .5094359764 10-17.  
Отметим, что отношение амплитуд колебаний h под влиянием Луны и Солнца, 

определяется отношением соответствующих коэффициентов Qm/ Qs = 2.17.  

(3) 

Понятие «запас» высоты перигея введено в работе [Прохоренко, 2014б] и 

определяется формулой: 

h res = h0 (a0, e0) -  ampl  h m (a0, e0)                              (4) 
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Выбор начального значения высоты перигея, исходя из наперед заданного «запаса» с 

учетом начального значения амплитуды колебаний приращения высоты перигея за 

оборот спутника в течение полупериода орбитального движения Луны   

Исходя из значения большой полуоси, можно найти начальные значения 

эксцентриситета и высоты перигея, соответствующие любому наперед 

заданному запасу высоты h res, используя приведенное выше выражение (4) в 

качестве уравнения относительно эксцентриситета при свободном значении 

параметра h res. Это уравнение преобразуется в  уравнение четвертой степени 

относительно e0:  

Решения этого уравнения при двух значениях «запаса» высоты 1000 км и 2000 км показано на 

рисунке, где по оси абсцисс отложены значения большой полуоси, а по оси ординат – значения h 

0 = a0 (1 -  e0), соответствующие действительным корням уравнения (5), принадлежащим 

интервалу (0, 1) 

0

2 8 4 2 8 2 2 2

0 0 0 0 0 0 0 0( ) 2( ) ( ) 0m m res resQ a e Q a a e a R h a e a R h           (5) 
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Безразмерный фокальный параметр  = 1- e2. 

Критическое значение безразмерного фокального 

параметра * (a/R) 

Отметим, что запас высоты перигея играет важную роль при запуске спутника на орбиту,  

однако в процессе вековой эволюции орбиты под влиянием внешних гравитационных возмущений 

решающим фактором является величина безразмерного фокального параметра *(a/R), 

определяющего время баллистического существования спутника, хотя запас высоты перигея иногда 

также может сыграть свою роль.  В качестве примера может служить коррекция орбиты Спектр Р за 

счет изменения фазы долгопериодической составляющей при опасном снижении высоты перигея в 

точке минимума вековой составляющей эволюции орбиты.    

Понятие критических значений  e*(a0/R) и * (a0/R), соответствующих нулевому 

значению высоты перицентра для центрального тела конечного радиуса R, введены 

в работе М.Л. Лидова [Лидов, 1961]. * (a0/R)=1- (1- R/a0)
2 

На рисунке линиями разного 

стиля и цвета показана 

зависимость фокального 

параметра  от большой 

полуоси при двух заданных 

значениях «запаса» высоты 

hres. Сплошной линией  

красного цвета показана 

зависимость *(a/R)  
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В качестве примера будем рассматривать орбиту с заданными  

начальными значениями наклонения к плоскости земного экватора, и 

высоты апогея и перигея над поверхностью Земли радиуса R 

Наклонение орбиты к 

плоскости Земного 

экватора 
ieq0 51.8 

Высота апогея над 

поверхностью Земли 
h a0 200 000 км  

Высота перигея над 

поверхностью Земли 
h 0 2500 км  

Остальные орбитальные элементы будем выбирать, исходя из научных 

задач и технических ограничений,  на основе ситуационного анализа и 

качественных методов теории возмущений  
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Начальные значения большой полуоси, эксцентриситета    

 и фокального параметра, Кеплеров орбитальный период P.  

Начальная амплитуда ampl  hm колебаний приращения высоты перигея за 

виток, обусловленных гравитационными возмущениями от Луны.  

«Запас» высоты перигея h res при выведении спутника на орбиту и 

критические значения эксцентриситета e* (R/a0) и параметра * (R/a0) 

a0= (h a0 + h 0)/2 +R 107628.388 км 

a0/R 16.87 

e0 =1- (h 0+ R)/a0  0.917508864 

0 =1- e0
2 0.158177 

Кеплеров орбитальный период P 4.07 суток 

ampl  hm (a0, e0) 687 км 

h res = h0 - ampl  hm (a0, e0) 1813 км 

e* (R/a0)=1 - R/a0 0.9407 

* (R/a0) = 1- e*2 0.1150 
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Эйлеровы угловые орбитальные элементы, 

определяющие положение  орбиты в 

экваториальной системе координат Oxyz 

ieq  - наклонение орбиты к плоскости земного экватора,  

eq – прямое восхождение восходящего узла орбиты, измеряемое в 

плоскости земного экватора относительно точки весеннего 

равноденствия,  

eq – аргумент широты перигея, измеряемый в плоскости орбиты 

относительно восходящего узла орбиты на плоскости земного экватора.  

 

Восходящий узел AN лежит на линии пересечения орбиты с плоскостью 

экватора и соответствует точке перехода спутника из южного полушария 

в северное, нисходящий узел DN соответствует точке перехода спутника 

из северного полушария в южное 

 

Области  возможных значений угловых элементов:  

ieq (0,180), eq (0,360) , eq (0, 360) 
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Для ситуационного анализа используем 

суточный орбитальный тор (СОТ) в 

экваториальной системе координат Oxyz, 

который образуется в результате собственного 

вращения Земли 

Понятие СОТ введено в работе [Прохоренко, 1983].  
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Форма суточного орбитального тора 

определяется следующими 

орбитальными элементами: a, e, ieq, eq 

Используя в качестве параметра аргумент 

широты u, измеряемый в плоскости обиты 

от восходящего узла на плоскости земного 

экватора, запишем параметрическое 

уравнение меридионального сечения СОТ: 

На рисунках использованы значения a = 15 R, e = 0.7, ieq =51.8, eq= 340. Восходящая ветвь 

орбиты, соответствующая значениям u  (-90,90), показана штриховой линией, а нисходящая 

ветвь, соответствующая значениям u  (90,270), показана сплошной линией   

2(1 )
,

1 cos( )

sin sin sin .

eq

eq eq

a e
r

e u

u i




 

 

2 2 cos ,

sin ,

eq

eq

x y r

z r

  

 

геоцентрическое расстояние r и 

широта eq соответствующей точки 

орбиты  определяются формулами:  

а 

б 
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Рассмотрим взаимное положение 

суточного орбитального тора и области 

радиационных поясов при различных 

начальных значениях аргумента перигея 

eq0, измеряемого в экваториальной 

системе координат 
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Модель радиационного пояса Земли 

Для описания границ радиационных поясов используем обобщенное 

уравнение силовой линии, выраженное через параметр Мак-Илвайна L, 

измеряемый в радиусах Земли  и инвариантную широту   

 

r = L cos2. 

 

В точке пересечения силовой линии с геомагнитным экватором r = L ,  = 0, а в 

точке пересечения этой линии с поверхностью Земли 

 

                                              r = 1,  = arc cos (sqrt (1/L))  

 

Внутренний радиационный пояс расположен между поверхностями  

L = 1.2 и 3.5 и содержит энергичные протоны (от 10 до 400 МэВ),  

 

Внешний радиационный пояс расположен между поверхностями  

L= 3.5 и 6 и заполнен протонами с энергией от 200 эВ до 1 МэВ.  
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Взаимное положение суточного орбитального тора и области радиационных поясов 

при a/R = 16.9,  e = 0.9175, ieq = 51.8 и  различных начальных значениях аргумента 

перигея eq0. На рисунках показано сечение орбитального тора и радиационного 

пояса плоскостью, содержащей ось вращения Земли и ось геомагнитного диполя 

При eq0= 225 на начальной стадии полета 

орбита попадает в самую середину внутреннего 

радиационного пояса и время прохождения 

спутника через радиационный пояс на каждом 

витке составляет от 3 до 4 часов. При этом 

долговременная эволюция орбит с таким 

значением eq0 сохраняет подобную форму 

суточного тора в течение всего первого года 

полѐта.  

При eq0 = 345 орбита на начальной 

стадии полета обходит внутренний 

радиационный пояс и проходит по 

периферии внешнего радиационного 

пояса.   

На основании этих представлений  можно осуществить предварительный выбор 

начального значения аргумента перигея eq0 
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Далее в нашем распоряжении остается только один свободный 

орбитальный элемент, прямое восхождения восходящего узла eq, 

которым можно распорядиться для выбора орбит, 

удовлетворяющих другим требованиям, связанным с характером 

вековой эволюции орбиты, временем баллистического 

существования и с длительностью прохождения спутника через 

тень Земли.  

 

И здесь важную роль играет определяемая параметром eq связь 

между угловыми элементами ieq, eq,  измеряемыми относительно  

экваториальной системы координат и угловыми элементами i, , 
измеряемыми относительно эклиптической системы координат.  
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Соотношения между угловыми элементами ieq, eq, eq 

измеренными в экваториальной системе координат Oxyz и 

угловыми элементами i, ,  измеренными в эклиптической 

системе координат OXYZ 

( , );

( , ),

eq eq eq

eq eq eq

eq

i i i i

i

  

    

   

cos cos sin sin cos cos , ,

cos (sin cos cos cos sin ) / sin ,

, sign(sin ) sign(sin ),

eq eq eq eq

eq eq eq

eq eq

i i I i I i i i

i I i I i

     

   

      

 

 

eq0 

 

0 
  

 
ieq0 

экватор 

орбита 

спутника 

i0 

 

I 

 

0 < eq0 <90 

 

эклиптика 

б) 

cos cos cos sin sin
cos , sin ,

sin sin sin

eq eq eq

eq

i i I i

i I i

  
      
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Зависимость i, ,  от прямого восхождения 

восходящего узла eq при фиксированном значении  

ieq0= 51.8  

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

( , ) ( , );

( , ) ,

( , ) ( , )

eq eq eq eq eq

eq eq eq

eq eq eq eq eq

i i i i i

i

i i

    

    

     

i (ieq0,eq0) = 0 при  eq0 =  80 

0 < i (ieq0,eq0) при –80 < eq0 <  80 

i0 < i eq0              при –80 < eq0 <  80 

i, ,  представляют собой разности между значениями соответствующих угловых элементов, 

измеренными относительно  экваториальной (Oxyz) и эклиптической (OXYZ) невращающихся 

систем координат, имеющих общую ось X, лежащую на линии пересечения плоскостей экватора и 

эклиптики и направленную в точку весеннего равноденствия  
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Значения угловых элементов i0, 0 для семейства орбит со 

свободным значением прямого восхождения восходящего узла eq0 

при фиксированных значениях ieq0= 51.8 и eq0= 345 

На рис. б горизонтальной 

линией показано значение  

0 =  eq0.   

Неравенство 0 < eq0  

выполняется при  

eq0  I и II четвертям   

При  

 eq0  III и IV четвертям  

eq0 < 0  IV III I II 

На рис. а горизонтальной 

линией показано значение 

i0 = i eq0.   

Неравенство  

i0 < i eq0  

выполняется при   

-80.7 < eq0< 80.7 

а 

б 
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Качественные методы исследования эволюции орбит 

основываются на разработанной М.Л. Лидовым и 

его учениками теории возмущений спутникового 

варианта ограниченной эллиптической 

пространственной задачи трех тел с учетом внешних 

гравитационных возмущений и  возмущений от 

сжатия планеты [Лидов, 1961, 1963], [Гордеева, 

1968], [Лидов и Ярская,  1974], [Вашковьяк, 1999].  

Отступление о качественных 

методах теории возмущений  
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Вековую составляющую эволюции орбиты под влиянием внешних 

гравитационных возмущений описывает двукратно осредненная 

возмущающая функция спутникового варианта ограниченной 

пространственной эллиптической задачи трех тел (задачи Хилла) с 

учетом сжатия планеты  

2
2 2

1

cos 5 2
(1 ) sin sin ,

2 2 5
k

i
W A i

   
       

  

2

1 3 3/ 2

3

4

k
k

k k

a
A

a






Обозначения:  a,  = 1 - e2, , i – Кеплеровы элементы орбиты спутника, ak, k 

– элементы орбиты возмущающего тела; k – произведение гравитационной 

постоянной на массу возмущающего тела. Угловые элементы, измеряются 

относительно плоскости орбиты возмущающего тела (эклиптики).  

где  

Эта  функция  представляет собой  главный член разложения возмущающей функции 

ограниченной задачи трѐх тел по степеням отношения модулей радиус-векторов 

спутника и возмущающего тела r/rk, в предположении малости параметра  = a/ak << 1 , 

равного отношению больших полуосей орбит спутника и возмущающего тела, а 

осреднения возмущающей функции выполнены по периодам орбитальных движений 

спутника и возмущающего тела.   
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0

0

2 2 2

0 1 2

0 1/ 2 2

2

0 1/ 2

; ε cos ; (1 ε)(2 / 5 sin ωsin ) ,

2
,

5 (1 ) sin sin 2

5cos ((1 )sin )
.

2

k

t

k

t

a c i c i c

d
t t

A i

A i dt





    


  

   

   
  







В работе М.Л. Лидова [Лидов,1961] для двукратно осредненной 

задачи Хилла получена интегрируемая система эволюционных 

уравнений, решения которой представлены в виде трѐх первых 

интегралов и двух квадратур 

3/ 2

1

3 3/ 23 3/ 2

2 3 3
.

2 4

k k k
k

k kk k

A a P
A

aa a

 
  

   

2 2 2

0 0 1 0 0 2 0 0 0где ; ε cos ; (1 ε )(2 / 5 sin ω sin ).c a c i c i    

3/ 21

1

3 3/ 2 3 3/ 2
1 1

2
3 3

.
2 4

n

k n n
k k

k k k k

A
a P

A
a aa



 
  

   


 

Для системы n возмущающих тел, 

расположенных на компланарных 

орбитах  используется следующий 

коэффициент  A 
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Представление фазовых портретов интегральных кривых  
на фазовой плоскости с1= const в цилиндрической системе координат  

(,  mod 360, с1) при фиксированных значениях с1, с2 введено в работах 
[Прохоренко, 2002] и [Прохоренко, 2007] 

Координаты седловых 

особых точек :  

 = 1, sin2 = 2/5/(1- c1) 

с1= 0 

с1= 3/5 

с1 = 0.06 Тонировкой отмечена 

область отрицательных 

значений с2 

с1 = 0.3 

При 0 < c1 минимальные 

значения  лежат на 

выделенных отрезках 

вертикальной оси, 

соответствующей 

значению cos  = 0.  

Координаты особых 

точек типа центр :  

 = (5/3c1)
1/2, sin2 = 1 
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Зависимость экстремальных значений min(c1, c2)  и min(c1, c2) 
фокального параметра  от интегральных констант c1, c2  

Параметрическое уравнение для   при фиксированных значениях c1, c2 и 

свободном значении аргумента перигея   

2 2 2 2

2 1 1

2 2
sin (1 )sin sin 0

5 5
c c c

   
           
   

Минимальные значения min(c1, c2) достигаются при sin2  = 1 и представляют 
собой младший корень уравнения 

2

1 2 1

5 5
1 ( ) 0,

3 3
c c c

 
       

 

Максимальные значения max (c1, c2) при отрицательных c2 представляют собой 

старший корень  этого уравнения, а при положительных c2 достигаются при 

sin2  = 0  и выражаются формулой  

max 1 2 2( , ) 1 5 / 2c c c  
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Область возможных значений интегральных констант c1, c2   

 и линии уровня значений безразмерного периода (с1, c2) вековой 

составляющей эволюции фокального параметра  

10 1,c 

3 3/ 2
1 2 1 21 2 1 2

3 3/ 2
1 1

4 ( , ) ( , )( , ) ( , ) 4
, или

3 3

k k

n n
kk k

k

j k k k

c c c cc c a c c
T T

A P P
A

a

  
 

 

     
   




 

  
 

2

1 1 1

2 1

1 1

3/ 5 , 2(1 ) / 5 при 0 3/ 5,
( )

0, 2(1 ) / 5                          при 3/ 5 1.

c c с
c c

c с


    


   

Выражения безразмерного периода (c1, c2) вековой эволюции 

фокального параметра через полный эллиптический интеграл 

первого рода получены в работе Ю.Ф. Гордеевой [Гордеева, 1968]  

Выражение для периода вековой составляющей T 

эволюции фокального параметра через безразмерный 

период (c1, c2) и Кеплеров орбитальный период спутника P  

Линии уровня безразмерного периода (с1, c2), полученные 

в работе [Прохоренко, 2002], позволили обнаружить 

различные симметрии, показанные на рисунке     
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О возможности пересечения орбиты спутника с 

поверхностью планеты конечного радиуса 

О возможности соударения спутника с планетой под влиянием 

внешних гравитационных возмущений впервые заявил  М.Л. 

Лидов [Лидов,1961], показав что предпосылкой для  

пересечения орбиты с поверхностью планеты является 

выполнение неравенства:    
А в работе [Лидов,1963], на впечатляющем примере 

гипотетической «Вертикальной Луны», которая  на орбите, 

перпендикулярной к плоскости эклиптики, просуществовала 

бы  не более 4.5 лет, М.Л. Лидов показал  неизбежность 

пересечения с поверхностью планеты высокоапогейных орбит 

спутников с наклонениями к плоскости орбиты 

возмущающего тела, близкими к  90. 

min 0 0 0 0( , , ) *( / ) .i a R      
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Достаточные условия для пересечения или  непересечения вековой 

составляющей эволюции высокоапогейной орбиты спутника с поверхностью 

планеты под влиянием внешних гравитационных возмущений  

min 0 0 0( , , 90 ) 0 *( / )a R        

min 0 0 0 0*( / ) ( , , ) ,a R i      

В работах [Прохоренко, 2007] и [Prokhorenko, 2011] сформулировано достаточное 

условие пересечения вековой составляющей эволюции орбиты спутника с 

поверхностью планеты радиуса R, исходя из значения *(a/R)  

min 0 0 0 0( , , ) *( / )i a R      

Это условие является обобщением сформулированного в работе М.Л. Лидова [Лидов, 

1963] достаточного условия пересечения с поверхностью центрального тела конечного 

радиуса R орбиты спутника с наклонением 90 к плоскости орбиты возмущающего 

тела при любом начальном значении 0 . 

В работе [Прохоренко, 2014а] сформулировано необходимое условие непересечения 

вековой составляющей эволюции орбиты спутника с поверхностью планеты радиуса R  

А в работе [Прохоренко, 2015] сформулировано достаточное условие непересечения 

вековой составляющей эволюции орбиты спутника с поверхностью планеты радиуса R   
2

1 0 0 0*( / ) cosa R c i     



32 

Горизонтальными линиями зеленого 

цвета показаны значения  и *(a/R) . 

Штрихпунктирная линия *(a/R) = 0.087  

является нижней границей области 

значений c1, при которых выполняется 

достаточное условие непересечения 

вековой составляющей эволюции 

орбиты с поверхностью Земли.  

Положительные значения c2 

предвещают ротационный характер 

эволюции вековой составляющей 

аргумента перигея для всего 

семейства рассматриваемых орбит.   

Зависимость интегральных констант c1, c2,  от значения eq0 при 

фиксированных значениях 0 = 0.158,  ieq0 = 51.8, eq0= 345  

2

1 0 0 0*( / ) cosa R c i     

Штриховой линий показаны 

значения c1(0 , ieq0, eq0, eq0).  

Сплошной утолщенной линией – 

значения c2(0 , ieq0, eq0, eq0).  

Показанные штриховой линией возможные значения c1 всего 

рассматриваемого семейства орбит лежат ниже указанной 

границы, однако среди них можно найти такие, которые 

удовлетворяют необходимому  условию непересечения 

вековой составляющей эволюции орбиты с поверхностью 

Земли  

1 0 0 0 min 0 0 0 0*( / ) ( , , ) ( , , ) .a R c i i         
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Зависимость интегральных констант c1, c2 и экстремальных значений 

фокального параметра min (c1, c2), max (c1, c2) от начальных значений eq0  при 

фиксированных значениях 0 = 0.158, ieq0 = 51.8  и eq0= 345 

• Значения min (c1,c2) и max (c1,c2). 

показаны пиниями малинового цвета. 

• В рассматриваемом случае условие не 

соударения  

                     *(a/R) <  min (c1,c2)  

выполняется на интервале, 0 < eq0 < 

50, верхняя граница  которого показана 

вертикальной линией малинового цвета.  

• Определенный интерес представляют 

значения eq0, принадлежащие 

интервалу (80,  120), при которых 

приближающиеся к нулю значения  

интегральной константы c2 приводят к 

увеличению периода вековой эволюции 

и времени  баллистического 

существования орбиты.  

• Однако выбранный вариант №1 , 

соответствующий значению eq0 = 60 

оказался более предпочтительным с 

точки зрения задач проекта.  

• Прежде чем переходить к 

исследованию выбранного  варианта, 

построим аналогичную картину для 

других значениям eq0   
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Зависимость интегральных констант c1, c2 и экстремальных значений фокального 

параметра min (c1, c2), max (c1, c2) от начального значения eq0  при фиксированных 

начальных значениях 0 = 0.158, ieq0 = 51.8  и eq0= 340 

• В рассматриваемом случае 

условие не соударения  

          *(a/R) <  min (c1,c2)  

выполняется на интервале  

              5 < eq0 < 55. 
 

• К этой области принадлежит  

выбранный вариант №2 , 

соответствующий значению eq0 = 

40.  
 

• Определенный интерес 

представляют значения eq0, 

принадлежащие интервалу (80,  

120), при которых 

приближающиеся к нулю 

значения  интегральной 

константы c2 приводят к 

увеличению  периода вековой 

эволюции и времени  

баллистического существования 

орбиты.  
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Зависимость интегральных констант c1, c2 и экстремальных значений 

фокального параметра min (c1, c2), max (c1, c2) от начальных значений eq0  при 

фиксированных значениях 0 = 0.158, ieq0 = 51.8  и eq0=  335 

• В этом случае условие 

несоударения * <  min (c1,c2) 

выполняется на интервале 

 10 < eq0 < 68 . В остальной 

области значений eq0 выполняется 

достаточное условие пересечения 

вековой составляющей эволюции 

орбиты с поверхностью планеты.  
 

• На интервале 75 < eq0 < 135 

интегральная константа c2 находятся 

в области отрицательных значений, 

при которых вековая составляющая 

эволюции аргумента перигея носит 

либрационный характер.  Этот 

интервал отмечен вертикальными 

линиями зеленого цвета. 

 

• Из этого интервала выбран 

вариант №3, соответствующий 

значению eq0 = 115 
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Зависимость интегральных констант c1, c2 и экстремальных значений 

фокального параметра min (c1, c2), max (c1, c2) от начальных значений eq0  при 

фиксированных значениях 0 = 0.158, ieq0 = 51.8  и eq0= 225 

• В этом случае условие 

несоударения * <  min (c1,c2) 

выполняется на интервале  

          -120 < eq0 < 35  

 

• А область отрицательных значений 

интегральной константы  c2 

соответствует значениям eq0, 

принадлежащим интервалам  

         -180  eq0 < -103 и  

          170 < eq0 180.  
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Вариант N1. Начальные значения угловых орбитальных элементов в 

экваториальной системе координат, соответствующие им значения угловых 

элементов в  эклиптической системе координат и интегральные константы c1, c2 

двукратноосредненной ограниченной задачи трѐх тел, описывающей вековую 

составляющую эволюции орбиты   

ieq0 51.8 

eq0 345  

eq0 60 

i0 43.6 

0 315 

0 80 

c1 = 0 cos2i0 

0.08282 

c1  < *(a/R)= 0.115 

c2 = (1-  0)(2/5 - sin2i0 sin20) 0.1367 

 min (c1,c2) 
0.11  

 min(c1,c2) <  * 

Этот вариант можно улучшить, используя  значение eq0 = 30 или 40. Тогда будет выполняться неравенство 

* <  min(c1,c2) и эволюция эксцентриситета будет носить периодический характер (не будет пересечения с 

орбиты с поверхностью Земли после первого периода.     
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Численный расчет долговременной эволюции орбиты под влиянием гравитационных 

возмущений от внешних тел показывает, что   

эволюция аргумента перигея носит ротационный характер. Расчетное время 

существования спутника на орбите составляет около 7 лет, rpmax= 6.7 R 

На Рис. а, б показана эволюция аргумента перигея , безразмерного фокального параметра  = 1 - e2 и перигейного 

расстояния r / R = a (1-e). На фазовом портрете (а) показана зависимость безразмерного фокального параметра  и 

перигейного расстояния r / R  от текущего значения аргумента перигея , а также соответствующая нулевому 

значению c2 граница (сепаратриса), разделяющая области либрационного и ротационного характера эволюции 

аргумента перигея, и соответствующая интегральной константе c2 = 0.01168  интегральная кривая двукратно 

осредненной задачи трѐх тел,.    

Красная линия на Рис. а и б соответствует значению r / R = 1, или  h = 0.  

Начальная точка показана светлым кружком, а конечная точка – черным кружком  

а б 
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Долговременная 

эволюция  

перигейного расстояния r/R  

и угловых элементов , i, , 

измеренных в эклиптической  

и экваториальной системах 

координат 

Эволюция аргумента 

перигея  носит 

ротационный  характер.  

Точка перигея, достигая 

максимального 

геоцентрического 

расстояния в середине 2022 

года, переходит из южного 

полушария в северное, а 

точка апогея –  из 

северного полушария в  

южное.  

Значения угловых 

элементов в эклиптической 

системе координат показаны 

утолщенными линиями  
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Эволюция суточного орбитального тора под влиянием внешних 

гравитационных возмущений при начальных значениях угловых 

элементов  ieq0 = 51.8, eq0= 345, eq0= 60. Старт в 2019 году 

Сечения  орбитальных торов показаны с дискретностью 1 год 

в течение первых трех лет и для 2024 и 2026 года 
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Эволюция годового  орбитального тора при начальных значениях 

угловых элементов  ieq0 = 51.8, eq0= 345, eq0= 60 

Сечения  орбитальных торов показаны с дискретностью 1 год для первых двух лет, с дискретностью 

полгода для 2022 года  и для 2024 года. В середине 2022 года достигается максимальное значение 

перигейного расстояния орбиты и точка апогея переходит через плоскость эклиптики из северного 

полушария в южное.    
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Положение проекции орбиты на плоскость эклиптики в 

системе координат OXYZ  

с апреля 2019 по январь 2026 года   

Все эти годы апогей 

проходит через полуденный 

меридиан в ноябре,  

а через полуночный – в мае.  

 
С 2019 до  2024 года 

проекция линии апсид 

поворачивается против 

часовой стрелки, в 

направлении к точке зимнего 

солнцестояния,  

а к 2026 году возвращается  

к своему  первоначальному 

состоянию    



43 

Численные расчѐты и визуализация 

результатов ситуационного анализа для 

варианта орбиты N1 

• На следующих слайдах орбитальная информация показана с 
дискретностью полгода, для тех месяцев, в которые  линия апсид 
находится вблизи полуденно-полуночной меридиональной плоскости. 
Для рассматриваемой орбиты такими месяцами являются май и 
ноябрь. В мае апогей проходит вблизи полуночной меридиональной 
плоскости а в ноябре – вблизи полуденной.  

• Положение орбиты показано в геоцентрической солнечно-
эклиптической системе координат GSE в виде проекций на три 
координатные плоскости.    

• Для тех же месяцев показана диаграмма расчетного времени 
прохождения спутника через солнечный ветер, ударную волну, 
магнитопаузу, радиационные пояса и другие области магнитосферы, а 
также через тень Земли.   

• Расчѐты основаны на использовании моделей соответствующих 
областей магнитосферы.  

• На рисунках орбита размечена значками тех областей, через которые в 
текущий момент проходит спутник. 



44 

Май 2019  

 апогей на ночной 

стороне в 

полуночном секторе  
 

•  Тень на одном витке не 

более 2.5 часов 
 

• RB от 1 до 1.5 часов 



45 

Ноябрь  2019  

Апогей на 

дневной стороне      

 

• Тень меньше 1 часа на всех  

витках   

• RB на каждом витке не более 

1.5 часов 
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Май  2020 

Апогей на 

ночной стороне  

 

• Тень на 1 витке около 

4 часов  

• RB от полутора до 

двух часов 
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Ноябрь 2020  

апогей находитcя 

на дневной стороне 

 

• RB от 1.5 часа до 2 часов  

• Тень на шести  витках не более 

1 часа 
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Май  2022 

Апогей на 

ночной стороне      

 

• Тень на двух витках  

1.5  и 2 часа  

•  RB нет 
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Ноябрь 2022  

апогей находитcя 

на дневной стороне 

 

• RB нет 

• Тень на двух витках не более 

1.5 часов 
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Апрель  2024 

Апогей на 

ночной стороне      

 

• Тень на одном витке около 4  часов  

•  RB на каждом вике не более 2 

часов  
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Ноябрь  2024 

апогей находитcя 

на дневной стороне 

 

• RB не более 1.5 часа на 

каждом витке  

•  тень не более 1 часа на 5 

витках 
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Обсуждение качества 

рассматриваемой орбиты 

• Что касается времени прохождения спутника через радиационный пояс. Как 
показывают расчѐты, в течение первых двух лет в 2019 и 2020 году время 
прохождения спутника через радиационные пояса составляет не более 1.5 – 2 
часов за виток, затем более чем на 3 года орбита уходит из рад. пояса за счѐт 
роста перигейного расстояния орбиты, а в 2024 снова возвращается в рад. пояс. 
После этого к  2026  году время прохождения орбиты через рад. пояс 
увеличивается более чем до 4 часов. Это может послужить причиной для 
завершения работы аппаратуры.   

• Что касается времени попадания спутника в тень Земли.  Как показывают расчѐты, 
максимальное время попадания спутника в тень Земли может составлять порядка 
4 часов, но это происходит в том случае, когда попадание в максимальную тень 
реализуется на одном витке в год. Если же реализуется два попадания в тень на 
соседних витках, то длительность тени на каждом витке оказывается в два раза 
меньше.  Это позволяет  управлять  длительностью прохождения спутника через 
тень Земли путѐм коррекции орбиты и для этого необходим двигатель.   

• Что касается качества орбиты с точки зрения задач проекта, то похоже, что 
предлагаемая орбита устраивает авторов проекта.  Если нет, то поищем другую.   
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