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e Business Intelligence

e Hi-tech Entrepreneurship



Topics In Math

 Randomized algorithms

o Stochastic optimizations (SPSA)
» Clustering

« Compressive sensing

* Financial mathematics

o Adaptive control

* Image and Video processing



Most Iinteresting results
l--optimization
SPSA algorithms

Estimation under almost arbitrary noise

Randomized clustering stability
algorithm

Randomized algorithm of R/S analysis
Oriental languages recognition
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e Stochastic
rogramming

e Quantum computing
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e Information

e Signal
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information signal data estimates



As an influence which leads to a transformation

e Informationis something potentially perceived as
representation, though not created or presentethdbr
purpose

* Information has been perceived by a conscious |
and also interpreted by it, the specific context
assoclated with this interpretation may cause the

transformation of the information inkknowledge
» datais signed and saved



y= X(= (X))
y— dim m
X — dim N
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B — Bayesian distribution

06 $
n =P x F1
e For time
series we can
K |te_rat|vely
esimate8
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n=1.2..
Yn = O xn + vn

P — random Perturbation

W

Bayesian distribution




 To chose a-priori the
number of sampl&l

* To solve a probler
with Prob=1-b for
almost all conditions A g
(except measure) \ @
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1930...

» Fisher (remove bias)

1950...

« Metropolis, Ulam (method Monte-Carlo)

1980-90

* Luing, Guffi, Polyak, Thibakov, Spall (fast algorithms)
e Granichin (arbitrary noise)

« Vadiyasagar (randomized Learning Theory)

2000....

« Campietc.
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Yn = nd" +vn, n=1,2,...

{%n} is known random with mean M, and crgj >0
{0 =1} signal is present

{6* = 0} no signal

{vn} is unknown but bounded noise

A b M, M.
(MSE) 6, = 2=k=1PhYk _, gu Mo Mo

a.S.

M M.
5 = f:%—”—l-% desision level

If én < & then — otherwise +
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r1,To,... — points of measurements € R?
y1,Yo, ... — observations € R1
Yn — F(ﬂ"ﬂ, 'lUfn) _I_ Un

w1, wo,...— uncontrollable unknown
random with unknown distribution P(-)
v1, V92, ... — unknown but bounded (nonrandom)

T he goal iIs

f(z) = [ F(a, w)P(dw) — max



« Number of observations 2d
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SPSA Algorithm

Ty — Op—1 x 0 On

On = On—1+ 72 —Ba(yit —vi)




One Measurement Form

 \We reduce number of observations
to 1 or 2 instead?d



The SPSA Grounds



SPSA

e Min$



Randomized Measurements
and |:-optimization
(Compressive Sensin



Data processing



Information theory

ShanornNyquist-Kotel'nikov Theorem



From 1D to 2D, 3D

1D —-1940-80
e N=10"3

2D — 1980-90
« N=10"6- Large

3D — 2000-10
 N=10"9- Huge

M<<N Is it possible?



Sparse (compressive) signals

S-sparsesector
x=(o,...,0,1,0,...,7,0,...,0,3,0,...)*T — 3-sparse

S-sparsesignals



Transform coding

Ineffectiveness
e all N data are needed

e all newN elements are to be calculate
many of them are zero

e 2selements are to be coding



New paradigm

Compressive sensing
e m<<N

e compressive (sparse) sigr



Compressive Sensing



Problems

 How to chose an universal matie
e What Is signal recovery algorithi



Matrix A

e Restricted Isometric Property

e |[ncoherence



Universal random matripd

e GaussiarN(0,1/m)
 Bernoulli

* Or



Signal recovery algorithm

To solveli-optimization problem



l--optimization



Example



One pixel camera



Original 100%  40% 20%



Original 40%






A randomized algorithm for
estimation amount of clusters

(Cluster Stabillity)



Example. Synthetic data set

The synthetic dataset Is simulated as a set oft 102
clusters of 8-16 instances each. Instances in each
cluster were generated according to an uniform

distribution based on circle with radius from 1(
30

(random value for each cluster).
 Number of Instances: 11245
 Number of Attributes: 2



Example. Synthetic data set

The scatter plot of the considered synthetic datta s



Example. Synthetic data set

Scenario approach allows us to reduce significantly the number of
clusterization algorithms computation.

We chooseM=8, N=10,T=3 and D=0.7.

We calculate only 30 values dfk) instead 3100.



(oleg_granichin@mail.ru)









The Intelligent

Systerr







Devicel Device 2 Device N



K«

»












15 %

X = F(X)
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S layer: Structural properties H. Eberhardet al, J. Bacteriol. 168 (1986) 309

Sporosarcina ureas

H. Eberhardt, NATO ASI Series (Springer-Verlag,1991)

Transmission electron microscopy image3D reconstruction of S layer viewed from
outer (top) and inner (bottom) surface



Growth of S layer on SIi(SI substrates

without plasma treatment

Solution of sodium phosphat
MgCl, and NaN

Plasma treatment of substrates _
with plasma treatment

Protein subunits are composed
of 20 different amino acids.
Their atomic composition is

C4912H 786d\| 13240161585









S layer: Sample characterization

TEM micrograph image AFM image



Electronic structure of S-layer: LDA,
building-block model

Theory: broadened with exp. resolution Charge-neutrality level model



Electronic structure of activated {RtCl,) and
reduced (DMAB) Pt/S-layer

Averaged
symmetrized unit cells

Sample preparation
Regular metal cluster arrays



I1mm=16m =0.001 m



100 pm =1 m = 0.0001 m



100 pm =16 m = 0.0001 m



10 pum =16 m = 0.00001 m



10 pum =16 m = 0.00001 m



10 pum =16 m = 0.00001 m



1 um =16°m = 0.000001 m



1 um =16°m = 0.000001 m



1 um = 166 m = 0.000001



1 um =16°m = 0.000001 m



1 um =16°m = 0.000001 m



100 nm = 10 m = 0.0000001 m



100 nm = 10 m = 0.0000001 m



100 nm = 10 m = 0.0000001 m



10 nm =16 m = 0.00000001 m



10 nm =16 m = 0.00000001 m



10 nm =16 m = 0.00000001 m



10 nm =16 m = 0.00000001 m



10 nm =16 m = 0.00000001 m



10 nm =16 m = 0.00000001 m



10 nm =16 m = 0.00000001 m



10 nm =16 m = 0.00000001 m



1 nm =1 m = 0.000000001 m



1 nm =1 m = 0.000000001 m



1 nm =1 m = 0.000000001 m



1 nm =1 m = 0.000000001 m



1 nm =1 m = 0.000000001 m



100 pm = 16°m = 0.0000000001 m



100 pm = 16°m = 0.0000000001
m
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