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Mars Global Surveyor (MGS) recently obtained coordinated lower-atmosphere (thermal and dust) measurements
and simultaneous upper atmosphere accelerometer data (densities, scale heights and temperatures) yielding the first
quantitative glimpse of the physical processes connecting the Mars lower and upper atmospheres during mildly dusty
conditions and during a regional dust storm event [1]. In particular, measurements from the MGS z-axis accelerometer
(ACC) aboard MGS have provided to date more than ~1200 vertical structures of the Mars thermospheric density and
derived temperature and pressure, as compared to only 3 previous in-situ profiles [1]. These data have been obtained
over two distinct Mars seasons (Fig. 1):  (Phase 1) 7-months approaching perihelion from southern Spring to early
Summer (Ls = 180 to 300), and (Phase 2) 4.5-months near aphelion from northern Spring to early Summer (Ls = 30 to
95).

During MGS Phase 1 aerobraking, the spacecraft periapsis moved from 32°N to 61°N and from a solar local time
(SLT) of 18 to 11 hours, with data acquired from 170 to as low as 110 km. During Phase 2, the spacecraft covered
similar dayside local times (SLT = 17 to 15) and briefly sampled the nightside (SLT ~ 2), while traversing a wider
latitude (60°N to 90°S) range. This local time-latitude coverage for solar minimum (SMIN) to moderate (SMED) con-
ditions (F10.7-cm = 80–150 units) far surpasses the limited spatial and temporal coverage afforded by the previous Vi-
king Landers and Mars Pathfinder. Additional Phase 1 CO2 15-µm band measurements from the Thermal Emission
Spectrometer (TES) have yielded temperature maps from the ground to 0.1-mb (about 30 km); corresponding IR dust
opacities have also been gleaned from the 9.0-µm silicate band. Independent ground-based microwave measurements
(disk-averaged) have routinely obtained temperatures over 0–60 km, generally confirming the TES values when avail-
able. The major features of this MGS upper atmosphere data are reviewed, and its trends elucidated in order to:
(1) illustrate the aerobraking environment experienced by the MGS spacecraft, and (2) decompose the likely processes
responsible for the atmospheric structure and its observed variations.

Phase 1 of MGS aerobreaking witnessed the onset, rise, and decay of a regional dust storm event (centered at 20°–
40°S), and the resulting responses of the lower atmosphere temperatures (TES, microwave), dust opacties (TES), and
upper atmosphere densities (ACC) at a given height. Throughout this “Noachis storm”, the ACC density increases (de-
creases) coincided with the warming (cooling) and hydrostatic expansion (contraction) of the lower atmosphere. ACC
densities at 130 km increased by a factor of two to three over 2–3 days (storm onset), in concert with an expansion of
the atmosphere by 8 km. Dust opacities also doubled at mid-latitudes, consistent with an increase of TES temperatures
in both hemispheres and microwave temperatures (both near 30 km) of at least 10–15 K. The gradual decay of this
storm occurred over 1–2 months. This observed global response of a regional dust storm, significantly impacting ther-
mospheric densities over the course of 2–4 days, was extraordinary and unexpected (Fig. 2).

MGS also confirmed that the Mars lower thermosphere (100–130 km) is a highly variable region on time scales of a
day or less. Orbit-to-orbit 2-σ variability of ACC densities at a constant height was observed to be ~70% [1], in accord
with previous Mariner and Viking values [2]. During the onset of the Noachis dust storm, this variability increased to
200%. Longitude fixed thermospheric variations were also observed throughout Phase 1 that seemed to be correlated
with the gross wave #2 features of the topography at Northern mid-latitudes [1]. Phase 2 aerobraking witnessed the
dominance of wave #1 features throughout Southern mid-latitudes (wave #2 near the equator). This aerobraking expe-
rience monitoring the Mars atmosphere near perihelion (Phase 1) and near aphelion (Phase 2) suggests that the cou-
pling of the Mars lower and upper atmospheres is composed of:  (1) inflation/contraction of the atmosphere, and (2)
dynamical forcing (tides, planetary waves, and gravity waves) connected to the unexplored middle atmosphere (50–100
km) [1,3,4].

Initial model studies have been conducted to simulate the Mars lower to upper atmosphere coupling observed by
these MGS measurements [e.g., 4]. The Mars Thermospheric General Circulation Model (MTGCM) (70–300 km) and
the NASA Mars General Circulation Model (MGCM) (0–90 km) have been crudely coupled for this purpose. Early
simulations suggest that the limited solar cycle, seasonal, latitude, and diurnal variations of the Mars lower thermo-
sphere (aerobraking altitudes) are generally reproduced. Phase 2 provides a large latitude sampling over limited after-
noon local times (SLT = 17–15). Figure 3 compares ACC density data and MTGCM predictions, showing that the
latitudinal variations of 130 km densities are well reproduced, except in the Southern polar night region at the very end
of Phase 2. In addition, diurnal variations of 130 km densities (60°–70°S) are displayed and compared to MTGCM
imulations (Fig. 4). The polar day-to-night contrast observed is slightly larger than predicted by the MTGCM. Finally,
a rather small solar cycle response of Mars temperatures (F10.7 = 80–150) is observed over both aerobraking phases;
exospheric temperatures near 45°N latitude appear to hover around 220 K.
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Not surprisingly, observed day-to-day variations over 100 to 130 km (70–200%) (especially during the Noachis
dust storm period) are not well modeled, owing to missing dynamical processes. It is clear that longitudinally-fixed
planetary waves must be properly addressed in 3-D model simulations in order to explain the short-term wave #1, 2 or
3 thermospheric variations monitored throughout Phase 1 and 2. Furthermore, coupled 3-D model simulations have
thusfar not been able to reproduce the rapid thermal expansion or the global response of the Mars atmosphere to the
Noachis dust event (Fig. 2). Model shortcomings point to our present lack of understanding regarding dynamical proc-
esses connecting the Mars lower and upper atmospheres. A sophisticated coupling of the MGCM and MTGCM codes
(fluxes and model fields at every grid point) is under development.

Fig. 1.  Ls vs. heliocentric distance including superimposed spacecraft missions (seasonal sampling) [4].

Fig. 2.  MGS ACC data vs. MTGCM simulations of densities at 130 km over Phase 1 orbits P005-200. MTGCM
curves are as follows: dotted (τ = 1.0) and solid (τ = 0.3) [4].
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Fig. 3.  MGS Phase 2 latitudinal variations of outbound 130 km ACC densities over SLT = 17–15 (all afternoon lo-
cal times combined). Orbits P574-1283.

Fig. 4.  MGS Phase 2 diurnal variations of 130 km ACC densities over 60°–70°S. Data at SLT = 15 and 2 are com-
pared to MTGCM simulations.
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