Конвекция во вращающемся облаке

П.Б. Руткевич¹, Б.П. Руткевич²

¹ Институт космических исследований РАН, 117997 Москва, Профсоюзная, 84/32, E-mail: <u>peter@d902.iki.rssi.ru</u> ² Радиоастрономический институт НАН Украины, ул. Краснознаменная, 4, Харьков 61002, Украина

В работе изучается влияние вращения на критические характеристики конвекции атмосферного воздуха в вертикальных каналах формы кругового цилиндра. Получено, что при наличии в системе силы Кориолиса движение воздуха в ячейке приобретает собственное вращение, а учет сжимаемости атмосферного воздуха приводит к появлению радиальной компоненты скорости. Данная модель отвечает формированию конвективных движений во вращающемся грозовом облаке, которые, в частности, отвечают за образование смерчей в подоблачном пространстве.

Введение

Хорошо известно, что такие атмосферные явления как смерчи связаны с сильным вращением как непосредственно хобота смерча, так и облака над ним. Внутри облака вращение регистрируется доплеровскими радарами, и часто именно эти измерения служат основными первичными признаками в средствах слежения за смерчами. Однако в системе облако – хобот вращение облака является первопричиной движения, из которого затем формируется хобот. В свою очередь, конвекция в толще облака, возникающая в силу неоднородного прогрева последнего, служит энергетическим источником движения воздуха. Таким образом, корректное описание конвекции во вращающемся облаке дает ответ о физических механизмах, ответственных за образование и развитие смерча.

Для описания подобной системы форму конвективной ячейки с хорошей точностью можно считать цилиндрической, и, естественно, ориентироваться на теорию гидродинамических движений в бесконечных вертикальных каналах кругового сечения, предложенную в работах Г.А. Остроумова [1, 2], где им были рассмотрены всевозможные случаи конвекции в указанных каналах. Однако исторически сложилось так, что роль вращения в таких системах часто оставалась вне поля зрения. В данной работе мы ставим целью изучение влияния силы Кориолиса на конвекцию в круговом канале, поскольку известно, что смерчи часто образуются на периферии вращающегося облака, где роль силы Кориолиса особенно значительна. Сдвиговая скорость на периферии облака также приводит к сильному вращению и может учитываться эффективным увеличением силы Кориолиса. Примерное изображение облака и конвективных ячеек внутри него приведено на рис. 1. Грозовое облако обычно имеет значительную толщину, поэтому вертикальный размер ячеек также значительный и необходимо учитывать эффекты сжимаемости атмосферы.

Рис. 1. Схема формирования конвективных ячеек в смерчевом облаке. Сдвиговая скорость на периферии облака на границе с неподвижным воздухом приводит к сильному вращению

Постановка задачи

Конвективное движение в облаке (см. рис. 1) с учетом сжимаемости воздуха и вращения можно описать полной системой гидродинамических уравнений [2, 3]:

$$\frac{\partial \vec{\mathbf{v}}}{\partial \mathbf{t}} - \mathbf{v}\Delta \vec{\mathbf{v}} + \frac{\nabla P_1}{\rho_0} + g\rho_1 \vec{e}_z + 2\Omega \times \vec{\mathbf{v}} + \vec{f} = 0, \qquad (1)$$

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \rho \, \vec{v} = 0 \,, \tag{2}$$

$$\frac{\partial P_1}{\partial \mathbf{t}} - c^2 \frac{\partial \rho_1}{\partial \mathbf{t}} + c^2 \gamma \rho_0 v_z = \chi \frac{c_p}{c_v} \Delta \mathbf{P}_1 - c^2 \chi \Delta \rho_1.$$
(3)

Здесь \vec{V} — скорость; P — давление; ρ — плотность; Ω — параметр Кориолиса, значения температуры получаем из уравнения состояния, которое имеет вид, обычный для задачи о конвекции: $T = T_0(z) + T_1$; $T_0 \gg T_1$; $\nabla T_0 = \gamma \vec{e}_z$; ρ_0 — плотность основного состояния, а P_1 и ρ_1 — поправки к давлению и плотности, соответствующие поправке к температуре T_1 ; вектор $\vec{f} = -\vec{e}_r \frac{v_{\theta}^2}{r} + \vec{e}_{\theta} \frac{v_{\theta}v_r}{r}$ описывает нелинейные слагаемые в цилиндрической системе координат; v — коэффициент вязкости; χ — коэффициент температуропроводности. Параметр состояния теплового режима γ описывает некоторое отличие фактического профиля температуры от адиабатического. В случае устойчивой стратификации $\gamma > 0$, единичный вектор \vec{e}_z направлен вертикально вверх вдоль оси z.

Считая задачу стационарной, положим $\partial/\partial t = 0$. Предполагаем аксиальную симметрию движения и выражаем поле скорости с помощью потенциалов тороидального, полоидального и потенциального полей:

$$\vec{\mathbf{v}} = \operatorname{grad} \Phi + \operatorname{rot} \vec{\mathbf{e}}_{z} \psi + \operatorname{rot} \operatorname{rot} \vec{\mathbf{e}}_{z} \phi, \qquad (4)$$

$$v_r(\mathbf{r}) = \frac{\partial \Phi}{\partial \mathbf{r}}, \ v_{\theta}(\mathbf{r}) = -\frac{\partial \Psi}{\partial \mathbf{r}}, \ v_z(\mathbf{r}) = -\Delta_{\perp} \phi.$$
 (5)

В терминах потенциалов поля скорости система уравнений принимает вид

$$\frac{\partial \Delta \Phi}{\partial t} = \nu \Delta \Delta \Phi - \frac{\Delta P_1}{\rho_0} - \frac{g}{P_0} \frac{\partial P_1}{\partial z} + \frac{g}{T_0} \frac{\partial T_1}{\partial z} + 2\Omega \Delta_\perp \psi - div \left(\vec{f}\right),\tag{6}$$

$$-\frac{\partial \Delta_{\perp} \psi}{\partial t} = -\nu \Delta \Delta_{\perp} \psi - 2\Omega \Delta_{\perp} \Phi - 2\Omega \Delta_{\perp} \frac{\partial \varphi}{\partial z} - \vec{e}_z rot(\vec{f}), \qquad (7)$$

$$\frac{\partial \Delta \Delta_{\perp} \phi}{\partial t} = v \Delta \Delta \Delta_{\perp} \phi + \frac{g}{P_0} \Delta_{\perp} P_1 - \frac{g}{T_0} \Delta_{\perp} T_1 - 2\Omega \Delta_{\perp} \frac{\partial \psi}{\partial z} - \vec{e}_z rotrot(\vec{f}), \tag{8}$$

$$\frac{1}{P_0}\frac{\partial P_1}{\partial t} - \frac{1}{T_0}\frac{\partial T_1}{\partial t} = -\Delta\Phi + \frac{g}{c^2}\frac{\partial\Phi}{\partial z} - \frac{g}{c^2}\Delta_\perp\phi\,,\tag{9}$$

$$\frac{\partial T_1}{\partial \mathbf{t}} = -\gamma \left(\frac{\partial \Phi}{\partial z} - \Delta_\perp \phi \right) + \chi \Delta T_1 \,. \tag{10}$$

Рассмотрим конвекцию в бесконечном вертикальном канале цилиндрической формы. При этом можно пренебречь вертикальными производными по сравнению с горизонтальными.

В данных предположениях нелинейное слагаемое приобретает вид

$$\operatorname{div} \vec{\mathbf{f}} = \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} \left(\frac{\mathbf{r}}{2} \frac{\partial}{\partial \mathbf{r}} \left(\frac{\partial \Phi}{\partial \mathbf{r}} \right)^2 - \left(\frac{\partial \psi}{\partial \mathbf{r}} \right)^2 \right),$$
$$\operatorname{rot}_z \vec{\mathbf{f}} = \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} \left(-\mathbf{r} \frac{\partial \Phi}{\partial \mathbf{r}} \frac{\partial^2 \psi}{\partial \mathbf{r}^2} - \frac{\partial \Phi}{\partial \mathbf{r}} \frac{\partial \psi}{\partial \mathbf{r}} \right),$$

$$f_{\rm z} = -\frac{\partial \Phi}{\partial \mathbf{r}} \frac{\partial}{\partial \mathbf{r}} \left(\frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} \mathbf{r} \frac{\partial \varphi}{\partial \mathbf{r}} \right).$$

Однако в данной работе ограничимся линейной постановкой $\vec{f} = 0$. В случае конвекции мы имеем дело с неустойчивой стратификацией $\gamma < 0$.

Рассмотрим конвекцию в бесконечном вертикальном канале цилиндрической формы. При этом можно пренебречь вертикальными производными по сравнению с горизонтальными. В этих условиях система уравнений (6)–(10) принимает вид

$$\nu\Delta_{\perp}\Delta_{\perp}\Phi - \frac{c^2}{\kappa}\Delta_{\perp}P^* - \frac{g^2}{c^2}P^* + \frac{g^2}{c^2}T^* - 2\Omega\Delta_{\perp}\psi = 0, \qquad (11)$$

$$-\nu\Delta_{\perp}\Delta_{\perp}\psi - 2\Omega\Delta_{\perp}\Phi = 0, \qquad (12)$$

$$\nu \Delta_{\perp} \Delta_{\perp} \phi + \frac{\kappa - 1}{\kappa} g \mathbf{P}^* - g \mathbf{T}^* = 0, \qquad (13)$$

$$-\Delta_{\perp}\Phi - \frac{g}{c^2}\Delta_{\perp}\phi = 0, \qquad (14)$$

$$-\gamma \Delta_{\perp} \phi = \chi \Delta_{\perp} T^*.$$
⁽¹⁵⁾

Таким образом, задача приняла вид системы обыкновенных дифференциальных уравнений (10)–(15) для трех потенциалов поля скорости Ф, ϕ , ψ и двух термодинамических функций *P*, *T*.

Потенциалы поля скорости и термодинамические функции

Исключая зависимые переменные из системы обыкновенных дифференциальных уравнений (6)–(10), получаем дифференциальное уравнение высокого порядка для потенциала полоидального поля скорости:

$$\left\{\Delta_{\perp}^{3} + \frac{g^{2}}{c^{4}}\Delta_{\perp}^{2} + \frac{\gamma g}{\chi \nu}\Delta_{\perp} + \left[\frac{\gamma g}{\chi \nu} - \frac{\kappa - 1}{\nu^{2}} \left(2\Omega\right)^{2}\right] \frac{g^{2}}{c^{4}}\right\} \phi = 0.$$
(16)

Остальные величины выражаются через потенциал полоидального поля скорости следующим образом:

$$T^{*} = -\frac{\gamma}{\chi} \phi, \ \Phi = -\frac{g}{c^{2}} \phi, \ \Phi = -\frac{g}{c^{2}} \phi,$$
$$\Delta_{\perp} \psi = \frac{1}{\nu} 2\Omega \frac{g}{c^{2}} \phi, \ P^{*} = -\frac{\kappa}{\kappa - 1} \frac{\nu}{g} \Delta_{\perp} \Delta_{\perp} \phi - \frac{\kappa}{\kappa - 1} \frac{\gamma}{\chi} \phi$$

Граничные условия задачи

Считая вертикальные стенки цилиндрического канала радиуса *r* = 1 (в безразмерных переменных) непроницаемыми, получим

$$\frac{\mathrm{d}\mathrm{T}(1)}{\mathrm{d}\mathbf{r}} = -\frac{\gamma}{\chi} \frac{\mathrm{d}\varphi(1)}{\mathrm{d}\mathbf{r}} = 0, \ \mathrm{v}_{\mathrm{z}}\left(1\right) = -\Delta_{\perp}\varphi(1) = 0, \tag{17}$$

$$v_r(1) = \frac{\partial \Phi(1)}{\partial \mathbf{r}} = -\frac{g}{c^2} \frac{\partial \varphi(1)}{\partial \mathbf{r}} = 0, \qquad (18)$$

$$\mathbf{v}_{\theta}\left(1\right) = -\frac{\partial \psi(1)}{\partial \mathbf{r}} = -\frac{1}{\Delta_{\perp} \nu} 2\Omega \frac{g}{c^2} \frac{\partial \phi(1)}{\partial \mathbf{r}} = 0.$$
⁽¹⁹⁾

Уравнение для потенциала тороидального поля скорости (16) в терминах безразмерных чисел задачи можно представить в виде

$$\Delta_{\perp}^{3}\phi + Ra_{2}\Delta_{\perp}^{2}\phi - Ra_{1}\Delta_{\perp}\phi - \left[\left(\kappa - 1\right)Ta + Ra_{1}\right]Ra_{2}\phi = 0.$$
⁽²⁰⁾

Полученная краевая задача характеризуется набором безразмерных параметров:

$$Ra = Ra_{1} = \frac{|\gamma|g}{\chi\nu}R^{4} > 0, Ra_{2} = \frac{g^{2}}{c^{4}}R^{2} > 0,$$

$$Ta = \frac{\kappa - 1}{\nu^{2}}(2\Omega)^{2}R^{4}, Ra_{0} = \left[\frac{\kappa - 1}{\nu^{2}}(2\Omega)^{2} + \frac{|\gamma|g}{\chi\nu}\right]\frac{g^{2}}{c^{4}}R^{6} > 0.$$
(21)

Уравнение для потенциала тороидального поля скорости (16) в терминах безразмерных чисел задачи можно представить в виде

$$\Delta_{\perp}^{3}\phi + \mathbf{R}\mathbf{a}_{2}\Delta_{\perp}^{2}\phi - \mathbf{R}\mathbf{a}_{1}\Delta_{\perp}\phi - \left[\left(\kappa - 1\right)\mathbf{T}\mathbf{a} + \mathbf{R}\mathbf{a}_{1}\right]\mathbf{R}\mathbf{a}_{2}\phi = 0, \qquad (22)$$

где число Ra = Ra₁ есть число Рэлея для цилиндрических вертикальных каналов. Число Ra₂ связано со сжимаемостью газа. Параметр Та есть число Тейлора для конвекции при наличии вращения.

Решение ищем в виде функций Бесселя:

$$\varphi = c J_0(\lambda_c r) + b J_0(\lambda_b r) + a I_0(\lambda_a r),$$
(23)

и характеристическое уравнение принимает вид

$$k^{3} + \operatorname{Ra}_{2}k^{2} - \operatorname{Ra}_{1}k - \lfloor (\kappa - 1)\operatorname{Ta} + \operatorname{Ra}_{1} \rfloor \operatorname{Ra}_{2} = 0.$$
⁽²⁴⁾

Пусть λ_c , λ_b , λ_a — корни уравнения (24). Тогда граничные условия задачи (17)–(19) позволяют выписать определитель, равенство которого нулю позволит определить критическое значение числа Рэлея конвективной неустойчивости в рассматриваемой системе:

$$\begin{vmatrix} -\lambda_c^2 & J_0(\lambda_c) - \lambda_b^2 & J_0(\lambda_b) + \lambda_a^2 & I_0(\lambda_a) \\ -\lambda_c & J_1(\lambda_c) - \lambda_b & J_1(\lambda_b) + \lambda_a & I_1(\lambda_a) \\ \lambda_c^{-1} & J_1(\lambda_c) + \lambda_b^{-1} & J_1(\lambda_b) + \lambda_a^{-1} & I_1(\lambda_a) \end{vmatrix} = 0.$$

Коэффициенты b и c выражаются через коэффициент a и корни уравнения (23) следующим образом:

$$b = a \frac{I_1(\lambda_a)}{J_1(\lambda_b)} \frac{\lambda_a^2 + \lambda_c^2}{\lambda_b^2 - \lambda_c^2} \frac{\lambda_b}{\lambda_a},$$

$$c = a \frac{I_1(\lambda_a)}{J_1(\lambda_c)} \frac{\lambda_a^2 + \lambda_b^2}{\lambda_c^2 - \lambda_b^2} \frac{\lambda_c}{\lambda_a}.$$

Таким образом, решение (23) линейной задачи (16)–(19) выражается с точностью до коэффициента *а*, который, например, можно определить из значения вертикальной скорости воздуха на оси цилиндра.

Анализ результатов

Влияние вращения на порог возникновения конвекции представлено на графиках рис. 2. Сплошной линией на рисунке (а) показаны решения уравнения (16) для случая $\Omega = 0.5 \text{ c}^{-1}$, что, согласно (21), отвечает значению Ta = 10⁶. Функция $\varphi_{\theta}(\mathbf{r})$ описывает радиальную зависимость потенциала полоидального поля для критического значения числа Рэлея, которое оказалось равным Ra = 460. На графиках (б)–(е) приведены радиальные распределения для остальных параметров задачи, таких как радиальная, азимутальная и вертикальная компоненты скорости (v_r, v_{θ}, v_z), температуры *T* и давления *P* в цилиндре.

Рис. 2. Радиальные профили потенциала полоидального поля скорости (а), компонент вектора скорости (б–г), температуры (д) и давления (е) в цилиндре. Сплошные линии отвечают за решение при Ω = 0,5; пунктирные линии — при Ω = 5 (размерности всех параметров приняты в системе СИ)

Решения уравнения (16) для угловой скорости $\Omega = 5 \text{ c}^{-1}$ (что соответствует Ta = 10⁸) на рис. 2 показаны пунктирной линией. Из приведенных графиков видно, что увеличение угловой скорости приводит к значительному увеличению собственного вращения v_{θ} воздуха в цилиндре и перераспределению давления *P*. При этом критическое число Рэлея оказалось равным Ra = 1226.

Рис. 3. Зависимость критического числа Рэлея от числа Тейлора

На рис. 3 представлена зависимость критического числа Рэлея от числа Тэйлора. Отметим, что в отсутствие вращения Ra = 452 (в соответствии с [2]). Таким образом, увеличение угловой скорости Ω приводит к увеличению порога возникновения конвекции. Более того, начиная с некоторых значений, при увеличении силы Кориолиса в облаке критическое значение числа Рэлея возрастает больше чем на порядок. При этом растет также собственное вращение в конвективной ячейке, и становится необходимым нелинейный анализ задачи. Однако описывая такую характеристику воздуха как критическое число Рэлея,

которое отвечает за порог возникновения конвекции и потому соответствует малым угловым скоростям, можно ограничиться линейным анализом.

Выводы

В настоящей работе рассмотрена проблема атмосферной конвекции на основе полной системы уравнений гидродинамики. Получены формулы для характерных размеров конвективных ячеек и инкремента неустойчивости, которые оказываются свободными от трудностей, возникающих при попытках использования для этих целей формул теории лабораторной конвекции. Согласно полученным формулам, конвективные процессы в свободной атмосфере практически не зависят от такого важного для лабораторной конвекции параметра как толщина конвективного слоя. Вместо него в задаче появляется параметр естественной вертикальной структуры атмосферы, описывающей уменьшение плотности атмосферы с высотой. Определяющую роль в атмосферной конвекции играют такие естественные для атмосферы факторы как скорость звука, турбулентная вязкость и градиент температуры.

Литература

- 1. Остроумов Г.А. Взаимодействие электрических и гидродинамических полей // М.: Наука, 1979. 319 с.
- Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости // М.: Наука, 1972. 320 с.
- 3. Ландау Л.Д., Лифшиц Е.М. Гидродинамика // М.: Наука, 1986. 736 с.
- 4. *Мальбахов В.М.* Гидродинамическое моделирование эволюции атмосферных конвективных ансамблей // Новосибирск: ИВМиМГ СО РАН, 1997. 186 с.