## Peculiarities in the accretion flow of the CV system HL CMa



## Typical size of a system



## < angular size is less than 1"

#### Variability formation in the disk

#### **Stochastic variability**

Lyubarskii 1997

### Usually seen in the $\dot{M}(r_i, t) = \dot{M}_o \prod_{j=0} 1 + \dot{m}(r_j, t)$ , X-ray luminosity of accreting binaries and AGNs



#### **Propagating fluctuations model**

## Is supported with observable statistical properties of the flux – i.e. log normal flux distribution





## **Disk evaporation**



Meyer & Meyer-Hofmeister 1994

## X-ray emitting region size 0.4 0.2 0.0 0.2 0.0 -0.2

(a) 5.0E-02 0.0 -5.0E-02

Mukai 1997





## What about other CVs? HL CMa



## Evolution of HL Cma Power spectrum after the outburst



## Broadband energy spectrum of the HL Cma during the outburst is typical for CVs



#### Difference from usual CVs: optically thick disk extends to the WD surface



# Spectral model with decreasing dotM





## Power spectrum reprocessing dumping model contradicts with SS Cyg observations



Revnivtsev et.al 2012

## HL CMa:

2-nd model: variability dumping due to the optically thick disk mass loss

Wind, evaporation to the Optically thick coronal flow, Or disk mass accumulation

Hidden hard UV emission

# HL CMa – unique CVs, with highest accretion rate in the quiescence state

